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Abstract

\.

“The dual issues of modal decomposition for tonal sound ficlds and the
temporal coherence of the modal amplitudes are investigated for the case of the
central Aretie sound channel at very low frequeneies (15-80 Hz). \\ detailed study of
the Arctic madal strueture for these frequencies revedls the central role played by
the strong Arctic surface duet&sThe performance of each of four different musdal
beamforming algorithms when applied to the vertical array deployed during the
FRAM IV Arctie Acoustic Experiment is analyzed. A multiple beam {or decoupled
beam) least squares processor produces the most acceptable results for Aretie
conditions. The modal decomposition is sensitive to vertical array tilt. cansed by
hydrodynamic drag; a technique for its estimation from the acoustic data is

developed.

Tonal data taken from both the horizontal and vertical arrays deployed
during FRAM IV is analyzed. Horizontal array results confirmy the modad
amplitudes generated from vertical array data. The rough surface scattering from
the ice canopy places an upper limit of -{0 Hz on efficient surface duet propagation.
Attenuation measurements for the first mode show excellent agreement with
predictions made for ice scattering using the method of small perturbations and
experimental ice statistics. The high levels of coherence observed {0.95 to 0.99)
show that tonal signal propagation in the Arctic channel is essentially deterministic

for time periods well in excess of one hour. The various modes may then bhe
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considered to maintain a constant phase relationship over time,
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Chapter 1

Introduction

It is tite spatial structure in a wave 5 ¢ thal agpries the great majority of

what might be called the imr shat the surrounding
environment. Exploitation of t Je anewers to questions of
object existence, location, ideiri® Making instrumentation

sensitive to the spatial structure of a wave 14 18 accomplished by providing the
detection system with a directional response.  While it is possible to build detectors
having inherent directionality, it is often easier to synthesize the desired directional
response through the employment of arrays of simpler detectors. The ontputs of
‘ these detectors are then combined, usually in a linear fashion, through a process

known as beamforming.

The art and science of beamforming has a rich history of application. ‘The
human body employs the concept by incorporating pairs of both eves and ears. The
fundamental physics of the technique is similar to that of such diverse areas of
science as diffraction grating theory, lens optics, x-ray crystallography, and radio
antennae design.  The underlying principles of beamforming are applicable
whenever one is dealing with ecither the directional transmission of energy or the

directional reception of energy propagating in a wave field.

This thesis deals with a fairly new and unique method of applyving the
principles of beamforming in the complex vertical structure exhibited by the low
frequency acoustic field found in the world's oceans.  Since the electromagnetic

spectram enconnters unacceptable levels of attenuation in seawater, the acoustic

‘ spectrum is the wave field of choice for all oceanie sciences. In particular, the very
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lowest frequency acoustic waves (those below a few hundred Hertz) are eapable of
propagating efficiently over hundreds of kilometers in water, making them. a prime
candidate for use in long range ocean surveillance and communication applications,
An understanding of the beamforming techniques appropriate for use with this wave
field is a central engineering issue in all but the simplest effortz to use it hoth

scientifically and practically.

1.1 Motivation

Traditional acoustic hbeamforming theories typically consider the detection {or
generation) of plane waves in an unbounded ffuid medium. The primary properties
of the medium that im’ act sound transmission (its sound speed and density) are
typically assumed to be constant throughout the medium. The constant medium
assumption is made to avoid an overly complicated propagation problem. while the
plane wave assumption is attractive for two reasons. First, it is physically realistic
in the case of a true unbounded uniform medium, since the spherical wave
generated by a point source may be considered to be locally planar at long ranges
from the source. Second, it produces mathematically tractable results, since. once
the assumption is made, the beamforming problem can be interpreted in terms of
spatial Fourier transforms of the observed sound field. A large body of theory and
experience involving Fourier techniques can then be borrowed from other
disciplines.

The underwater acoustic research of the last two decades has increasingly
pointed towards the conclusion that an unbounded uniform medinm is a poor choice
of model for the world's oceans. This is particularly true at the low frequencies of

interest here, where even the deepest ocean depths may correspond to only a few

hundred acoustic wavelengths, This conclusion is well understood within the sound
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propagation community, where more appropriate layered waveguide models have
gained wide acceptance. However, its impact on beamforming theory has been
considerably more limited. This is primarily because the incorporation of a non-
vniform medium in beamforming theory makes the plane wave assumption
physically unrealistic; it is the propagating normal modes that are the fundamental
spatial sound structures in a waveguide. Giving up the plane wave assumption in
turn requires that the Fourier transform interpretation and its attendant
mathematical elegance be abandoned. Instead, the traditional techniques have
generally been extended through the assumption of a medium that is loeally uniform
in the vicinity of the array. The plane wave assumption may then be maintained:
the resultant beamformer ontput is interpreted in terms of the spatial Fourier

transform of the sound field present at the array.

This approach has three advantages. First, the procedure is reasonably
robust. Second, it is well understood, from both the theoretical and application
viewpoints, Third, it still works well for horizontal arrays in oceanic waveguides,
sinee, for this particular geometry, the vertieal structure of the normal modes i
effectively hidden; for a horizontal array, each mode appears to be no more than a

plane wave with a particular grazing angle.

The technique also has a number of serious drawbacks. First. it is not very
insightful, since, a3 mentioned earlier, the modal decomposition is much more
physically relevant in a waveguide than the Fourier decomposition. Second, it is
not a particularly efficient estimation scheme, for it requires a large number of
parameters (the amplitudes and phases of the incoming plane waves from all
possible directions) to be estimated in order to eharacterize the total sound field at
the array.  Representations that minimize the number of parameters needed to

completely deseribe the field generally make better estimation techniques heentise
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each parameter's estimate includes at least a small amount of error. Finally, and
most importantly, the approach obscures the impact that the waveguide model can

have on the issue of target parameter estimation.

Consider the information about a point source that an array can extract from
the sound field in a uniform unbounded medium. The direction to the soures (its
three-dimensional bearing) is casily found by estimating the direction of the signal’s
wavenumber vector, but an estimate of target range can only be made through the
measurement of the curvature of the spherical wave. At anything other than short
ranges from the source, this implies an impractically long array, so -that range
estimation is generally not considered feasible.  This limitation on target range
estimation is closely linked to the unhounded medium assumption; if one adopts a
layered wavegnide model, though, direct estimation of the source range (and depth)
from the observed sound field is at least theoretically possible for an array of finite
aperture deployed vertically across the waveguide. Source range information can he
obtained most directly from the relative phases of the various prapagating modes,
while the source depth can be extracted from the relative modal amplitudes. Other,
less direct (and perhaps more robust), target range and depth estimation technigues

are also possible.

The great potential value of source range and depth estimation serves as the
motivation for studying the nature of the modal amplitudes and phases. One of the

fundamental seientific issues that must be addressed in assessing the practieal utility
of range estimation in a waveguide is whether or not the relative modal amplitudes
and phases are temporally stable. If hoth types of parameter can be considered to
be constant over reasonable lengths of time, then there is some chance that range

estimation techniques might be feasible; conversely, if one or both show significant

random behavior, ther the chanee for practical suceess is small. Note that it is the
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stability of relative modal ampiitudes and phases that is of interest here: it is
entirely possible for these parameters to be essentially constant even if the
equivalent absolute measurements display a great deal of random behavior. All that

is required is that the absolute measurements not be independently random.

The ultimate purpose of this thesis is to study the temporal stability of
relative modal amplitudes and phases in one specilic instance: that of long range
sound propagation in the central Arctic Ocean. There are a number of reasons for
choosing to study the Arctic channel. First, a reasonably extensive data set,
including vertical array data, is available from the FRAM IV Arctic Acoustic
Experiment.  Second, the unique nature of the Arctic simplifies investigation in
some important respeets, although it complicates the effort in others. Finally, the
Arctic channel possesses characteristics that make it a prime, candidate for

successful application of the range and depth estimation techniques of interest.

Intimately related to any such attempt is, of course, the ability to estimate the
modal amplitudes and phases directly, which is equivalent to the development of
beamformers more appropriate to the waveguide nature of the low frequency ocean
acoustic channel.  In addition to supporting the ultimate objective of the thesis,
these are of obvious interest in their own right. An ancillary purpose of this thesis
is to characterize some o1 the different ways in which the modal decomposition

might be implemented and to study the performance of these methods in the Aretic

sound channel.
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Figure 1-1: Signal Replication for Hydrophones in a Horizontal Array
(0 to 80 Hz Band)

1.2 Preliminary Concepts

Consider the set of time series displaved in Figure 1-1. These traces are the
signals received on various hydrophones of a horizontal array from an explosive
source several hundred kilometers away.  The important observation to make is
that. the signal received on any sensor can be considered to be just a time shifted
repliea of the signal received on any other sensor. Most linear beamforming
techniques, at some point in their derivation, assume that the effeet demonstrated

in Figure 1-1 is true, whether or not it actually holds in practice.

Beeause traditional beamforming techniques are so dependent on the shifted

replica assumption, the methods experience difficulty when employed in situations
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where the the assumption is not valid, as is the case with the set of time serivs
shown in Figure 1-2. These traces are the signals received from the same explosive
source as in the previous figure, but now taken from various elements in a vertical
array, o that the elements are distributed above and below each other in the water
colurn rather than to either side, as was the case in Figure 1-1. Vertical arrays are
of natural interest in a waveguide, since they sample the modal structure of the
sound propagation much more fully than do horizontal arrays. Figure 1-2, for
example, clearly highlights the modal structure of the channel much better than
Figure 1-1. In particular, the long coda for the signal is the arrival of the first
mode, which travels with a slower group velocity and with more dispersion than the
other modes. The gradual shortening of the coda with depth demonstrates quite
dramatically the \'afialion of the shape of the first mode with frequency. Since the
propagation path for the signals of Figures 1-1 and 1-2 is the same central Aretic
channel examined throughout this thesis, the reader will find the actual shape of the

first. mode for various frequencies in Figure 4-4.

If it is the modal propagation structure that is to be studied, as it is here, then
the shifted replica assumption iz clearly inappropriate. A review of the channel
model  assumed by traditional  beamforming techniques provides a  better
understanding of the alteenatives.  This model may be partially deseribed in the
vernacular of signal processing as the known signal in noise model.  This means
that the sound energy of interest, called the signal, is considered to be a known,
deterministic waveform, with some unknown but non-random parameters that do
not vary over time. The sound euo;gy not of interest is called the noise, and is
assumed to be an additive random process. .\ tonal signal of known operating

frequency typivally has two unknown parameters, its amplitwde and it~ absolute

phase; these ean be incorporated into a single unknown comples amplitude if the
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complex exponential notation is used. If one first quadrature demodulates the
received signal at the nominal tonal frequency and then performs a low pass
filtering operation, then the resultant output for any single hydrophone may be

written as

o) = A +n(l), (L.1)

where p(l) is the complex demodulated form of the received signal, A is the
unknown complex amplitude, and a(t) is the complex noise process that results from
processing the noise process received at the hydrophone through the demodulator

and filter.

This deseription tells only part of the full story, kowever, since it includes no
information about the spatial nature of the field; that is, it does not indicate how
the signal at one hydrophone is related to the signal at some other hydrophune

‘ located nearby. The shifted replica assumption is used to define this relationship, _
The madel of equation (1.1) can then to be extended to cover all .\ sensors in the
array. Grouping all the different demodulated hydrophone outputs into one N X |

complex vector, and their noise processes into another, one may write

p() =EA+n(1), (1.2)

where the N X 1 complex steering veetor E indieates the phase shift that each
replica undergoes in propagating to its particular hydrophone

-ﬁ-
e
e
E=| ' |. CL3)

9 ¢ jd‘\‘ o

‘ When the sensors in the array are distributed at varying depths in a




2]-
waveguide, as they are in Figure 1-2, the modal nature of the prapagation must be
acknowledged, making the simple shifted repiica assumption an inadequate
description. Instead, each normal mode of the total field can be considered ta be an
independent waveform, so that the the shifted replica assumption must be applied
on a mode by mode basis rather than to the full signal. A\ vector of unknown
complex amplitudes now exist, one for each of the M modes included in the model.
Note that the selection of the number of modes M to consider is essentially o

modeling decision that must be made by the user.  The mathematical signal

description E now becomes an .\ X M complex steering matrix of the form

[0 )c-’vu oals )c-’?w T E )c{”l-\i
o N T R V1
oyfzal €T3 eyfzy) e M oyfsal et

(]|
]

(1.4)

~ L] . .
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where the &*® column of the matrix represents the generalized steering veetor for
the k** mode, which now includes amplitude factars ¢z} thr seflect the size of the
moade shape at the various sensor depths in addition to the modal phase shifis Hipe

The resulting madel is then

p{t)=EA +n{l). (1.5)

where A is the M X 1 vector of unknown complex neadal amplitudes, In Chapter
2, this model is derived rigorously from both range-independent and range-

dependent normal mode descriptions,

The madel implied by equation (1.5) forms the basis for all the different madal
beamforming algorithms developed in Chapter 5. In its temporal aspeets, this

maodel is similar to the one used m the plane wave beamforming development. The

two differ only in their spatial aspeets, and then only in the number, and not the




22

type, of the unknown signal parameters.

Even though they have been modeled here as non-random constants, it is
reasonable to assume that the complex modal amplitudes will actually vary
randomly over time in any real ocean. The size and structure of these fluctuations,
particularly the size and structure of the phase fluctuations for the different modes,
is of fundamental importance to the proper characterization of the acoustic
propagation from a signal processing viewpoint., Indeed, the measurement and
analysis of these fluctuations is the ultimate objective of this thesis, The eritical
issue here is whether or not the phase variations found for any one mode are
independent of the phase variations found for the other modes. If the Auctuations
occur independently of one another, then' they destroy the phase relationship
Latween the various modes: in this case the modes are said to be incoherent with
respect to each other. On the other hand, if any fluctuations that cecur do so
simultancously across all the modes, then the modes remain phase locked with

respect to each other, and may be considered to be coherent.

Examination of the coherence of the different maodes ix important for a
number of reasons, three of which are mentioned here.  First, the issue alfeets
propagation modeling. Il the modes are incoherent with respect to each other, then
the individual modal phases can be ignored, and the total field energy shonld be
computed by summing individual modal energies. Conversely, if the modes are
coherent, then both their amplitudes and their relative phases have to be predicted
accurately, since they are.nceded to properly compute the total field. Second, the
issue is central to the question of the feasibility of direct target range estimation,
which, as discussed earlier. requires a strongly coherent mode ficld in order to
produce accurate results. Finally, from a signal processing point of view, a measure

of the mode coherence is a eritieal element in any complete deseription of the multi-
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path environment of the channel. An incoherent mode field indicates that the
various transmission paths are independent and phase random; the often used
WSSUS assumption (wide sense stationary, uncorrelated scatterers) implicitly
assumes this characterization. On the other hand, a consideration of the linear
relationship between rays and modes leads to the conclusion that the multiple paths

cannot be considered independent if the mode field remains coherent.

A good measure of mode eoherence can be made from the M X M modal
crozs-coherence matrix, which exists in two versions. The unnormalized form of the

matrix can be defined as

Sy=FE[AAY], (1.6)

where the + symbol stands for the comugwle transpose opcmlmn. The uetation
E[-] nominally represents the average over an ensemble of diffesent  trials:
however, time averages rather than ensemble averages are almost always used when

implementing the process. Each element of the matrix can then be written as

Sy = E [ 4 = E (1] 1A e A~ 4], (1.7)

whese

A=A

A= lafe™ (1.8)
is the magnitude-phase representation of the complex modal amplitude. The

clements of the normalized modal cross-coherence matrix are sealed versions of the

unnormalized matrix elements, namely,
[ ]
— — E [.""' ."k]

Y e (1.9)
E[[AJ) E{14,)]

The normalized matrix has two useful properties: its diagonal elements are all unity:

and the magnitude of any non-diagonal element is not larger than 1.0.
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To understand how the cross-coherence matrix reflects the phase randonmnes
of the various modes, consider a situation where the magnitudes of the melal
amplitudes are constant and only the modal phases are allowed to be random.

Then the clements of the normalized modal cross-coherence matrix assume the form

Ty = E [e 2%~ W], (1.10)

If the two random phases are now completely independent of each other, then their
difference is also completely random, so that the expectation takes on a value of
scro. On the other hand, if the two modes are phase locked. then the phase
difference takes on a constant value, even though the individual phases themselves
may be totally random; tie resulting magnitude of the matrix term is one.  The
magnitude of any term of the normalized modal cross-coherence matrix, therefore,
provides a quantitative measure of the coherence of the two modes comprising the

term.

Two isrues remain; that of estimating the modal amplitudes and their cross-
coherence based on the model of equation (1.5), which is exactly the modal
beamforming prablem; and that of the applying a model that assumes a non-random
signal to mode coherence estimation, which is a measure of the signal’s randomness.

These subjeets are taken up in Chapter 5.

1.3 Objectives

The ultimate purpose of this thesis is to measure the coherence bhetween
different normal modes emanating from a single tonal source and then propagating
through the central Aretic acoustic sound channel to ranges of several hundred
Kilometers.  such an investigation implies a great deal more than that whiceh is

explivitly stated. To begin with, if one wishes to measure the properties of the




normal modes, then one must first understand the modal strueture of the sound
channel of interest; this, in turn, requires thorough investigation of some of the
oceanographic properties of the local environment, including itemz such as the
channel sound speed profile and surface and bottom descriptions. Obviously. there
is a need to understand in detail the nature of the available data and the equipment
and techniques used to obtain it. The reecived signal energy must be separated into
the component modes while at the same time rejec.ing as much background noise as
possible. This effort turns out to be non-trivial, and much of this thesis is spent
understanding the methods available, their performance in various situations, and

their sensitivity te the realities of field research.

If one has managed to accomplish all of the above, then there is a reasonable
chance of making some valid measurements of the coherence of the various modes.
At the same time, greater insight is (hopefully) gained into the nature of sound
transmission in the channel under consideration, and thus it is valuable to consider

the acoustic propagation implications of the results.

This thesis thus has five general objectives:

1. To deseribe and understand the modal structure of  he central Aretic
sound channel encountered during the FRAM IV EX_eriment, including
the cffect of different environmental aspects on this structure and its
implications for the source and receiver geometries involved:

[ 2]

. To develop the beamforming methods needed to make direct modal
amplitude estimates for narrowband tonal signals, particularly when
vertical arrays are employed, and to answer some of the performance
questions regarding these techniques;

3. To assess the operational utility of vertical arrays, and to understand tha
impact of some of the practical realities encountered in their use,
particularly with respeet to the modal decomposition proeess:

1. To answer the question of whether or not the amplitudes of the various
modes generated from from a single harmonie point source remain




coherent after propagation to long ranges in the Arctic sound channel;
and

5. To assess the implications of the modal amplitude and coherence
estimates made in light of the current understanding of central Arctic
sound channel propagation.

1.4 Contributions

This thesis provides a number of significant contributions to the fields of
underwater acoustics and signal processing. These contributions may be classified

into three areas.

First, there are several contributions made to the discipline of signal
processing and, in particular, to beamforming theory. The modal beamforming
algorithms developed in Chapter 5 are not really new. Hinich {42]. {43, Clay (17].
and Bucker [9], among others, have all covered similar ground. In any case, the
results are straightforward analogs of carlier plane wave processing results examined
by such a large number of other investigators, such as Schweppe [4]. Capon [10].
and Baggeroer (2. Rather, it is the performance evaluation of these estimates
which is unique in thiz work, especially because it is made for a real array and a swt
of modes developed from a real channel.  The assessment of mode resolution
provides some valuable insight into which modes can be distinguished and which
cannot.  The study of the numerical stability limits to the number of modes that
can be simaltaneously included in a multiple beam beamformer contributes in a
similar way. The performance relationships of multiple beam and single beam
algorithms, especially for the MLM approach. is a subjeet not adequately addressed
previously. Finally, the examination of the difficulties of the MLM algorithm in the
face of coherent modal signals provides a different perspeetive on another important

signal processing issue that is all too often incorreetly ignored,
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The second area of contribution deals with the practical issues involved in the
use of vertical arrays. Most important here is the finding that modal decomposition
is extremely sensitive to array tilt.  This result has tremendous operational
significance, because it indicates that the shapes of vertical arrays must be known
far better than they are presently, if the devices are to be exploited to anything

near their theoretical potential.

The area in which this thesis makes the largest number of significant
contributions, however, is to the discipline of underwater acoustics, particularly to
the understanding of how low frequency sound propagates te long ranges in the
central Aretic Ocean.  This thesis represents the first time that modal amplitude
and phase measurements have been made for low frequency tonal signals using
actual field data from a vertical array and direct modal decomposition technigues,
Previous efforts involving modal amplitude estimation® for tonal sources, such as the
shallow water experiment conducted by Ferris [33] and the laboratory investigation
of Hoback, Tindle, and Muir [41], have all allowed the channel itself to accomplizh
the madal separation by utilizing pulsed sinusoids which then separate temporally
into the various modal arrivals because of different modal group velocities.  The

present effort obviously has much wider scientific and practical application.

Bevond the intrinsic value of medal beamforming ax a tool for further
scientific investigation, additional contributions are made in understanding the
process of low frequency transmission in the central Arctic. In particular, both the
modal amplitude and coherence estimates made here are the first of theie kind to be
attempted, and provide some very new and very different insights into Arctic Qcean
propagation.  The picture of an essentially deterministic sound field that emerges

from the coherence measurements and the stability observations not only verifies

Mikhalevsky's earlier findings [57], but also expands on them considerably, since the
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various propagation paths have now been at least partially separated. The
classification of two significantly different propagation regimes, one below 40 Hz
and the other above, has practical implications beyond its usefulness in cataloging
Arctic propagation; these are discussed in the conclusions of Chapter & The ice
scattering effects displayed in the results provide new insight into a vesy important
problem that has not been satisfactorily solved. Of the most intersst here are the
indications that sound energy scattered by the ice remains coherent with the
specular field, and may play a significant role in the overall sound transmission
picture.  Finally, the in depth study of the modal structure of the central Aretie

conducted in Chapter 4 provides new perspective on the role that the strong Aretic

surface duct plays in channel propagation.

1.5 Thesis Organization

The remainder of this thesis consists of seven chapters and two appendices. In

general, each chapter covers one major aspect of the overall analysis.

Chapter 2 lays the theoretical groundwork for modal beamforming technigques
by providing a mathematical deseription of the sound field generated at a distant
array by a point source that is located in a waveguide. This deseription. which is
based on acoustic normal mode propagation theory, is then couched in a form to

which optimal estimation theory can easily be applied.

Chapter 3 provides a full description of the FRAM IV Arctic Acoustic
Experiment from which the data set of interest is drawn.  Most of the important
technical details of the experiment (navigation data, hardware descriptions, ete.) are
also provided. A preliminary analysis of some of the practical issues involved in

dealing with suspended array svstems is included.  This is done to highlight the

issues” relative importance to the modal beamforming problem when using both
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horizuntal and vertical arrays. The preprocessing scheme used to compress the data
set 1o a usable size is discussed. Finally, some of the resultant time series are
analvzed to provide preliminary insight into the modal energy distributions and

coherence values that might be expected.

Chapter 4 presents a detailed analysis of the significant. environmental aspeets
of the central Arctic sound channel. An in depth study of the modal structure
encountered during the FRAM IV Experiment is made for the source-receiver
geometries of interest.  Thix study is a necessary preliminary to any modal
beamforming effort, since it defines the specific spatial structures of interest

throughout the rest of the thesis,

In Chapter 5, several different modal beamforming algorithms are developed
theoretically from optimal estimation theory, Their theoretical performance is then
analyzed, leading to the selection of a multiple beam least squares technique as the

most suitable method for processing the data from the vertical array.

Chapter 6 studies the most important practical issue that arises when
attempting modal beamforming with vertical arrays; that of array tilt, The modal
decomposition process is shown to be extremely sensitive to the effective tilt angle,
Since no direct tilt measurements were made during the FRAM IV experiment, a

relatively simple method for its estimation from the acoustic data is developed.

Chapter 7 presents the outputs of the modal beamforming processor when
applied to the actual data set.  Horizontal and vertical array measurements are
contrasted, and both are compared against theoretical predictions.  Some
corroborating shot data is also presented.  The modal amplitude and  mede

coherence results are analyzed to understand their implications for central Aretic

sound propagation.
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Chapter 8 provides a summary of the results and a general discussjon of the

tinal conclusions of the thesis.

Each of the two appendices deais with a particular mathematical aspect of

modal beamlorming theory needed to make the analysis rigorous.
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Chapter 2

A Modal Source Description

The purpose of this chapter is to rigorously develop, in a form that is
tractable within the context of signal processing theory, a mathematical model to
describe the sound pressure field that a harmonic point source imbedded in a
waveguide generates at a distant receiving array. The final result of this
development has already been presented (in a somewhat simplified form) in
aquations (1.4) and (1.5). The present chapter is designed to provide a more
detailed presentation of the implied assumptions and the line of reasoning that leads
to this result. The development consists of two parts. First, normal mode

‘ prpagation theory is reviewed for both the range independent and range dependent
chacnels. Normal mode theory is the natural starting point for this thesis, sinee it is
modal characteristics that are of interest here. Besides providing a solid link from
the various forms of normal mode theory to the present effort, the review akn
provides an opportunity to introduce the nomenclature and notation that is used

througlout the rest of the werk.

The remainder of this chapter is concerned with the conversion of the various
modal propagation theories to forms that describe the sound pressure field in the
immediate vicinity of a distant receiving array. This conversion is important, as it
represents the boundary between theories in the underwater acoustics domain and
those of the signal processing domain. The results then become the basis for all
further work in this thesis. The assumptions and approximations needed to
complete the conversion are carefully presented, and the change in notation to the

‘ matrix forms typically used in signal processing is deseribed.

-
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In itz simplest form, that of a hard or non-propagating bottom, -ange
twiependent normal mode theory is a zsimple application of the standard sepuiation
of variables approach to tiie solution of the wave equation. Pekeris, in his awie
peper 1845, first showed how the concept could be extended to the case of & mure
reainie t¢ean bottom, that of an infinite fluid half space with a given sound spuod
and density.  Tod., of course, any number of standard references include
discussions on the sulicet [79), [18].  Range dependent normal mode theory is
somewhat more recent and not as well documented. Originally proposed by Pieree
[65] and Milder [58], it i3 an area of active iuterest that has been used 1o investigate
the effeet of range vanaaons in the surface, in the water column. ad in the
bottom. Examples of recent work include Rutherford (72], Dozier and Tappert [27],

[28], and Beilis and Tappert [3].

2.1 Normal Mode Propagation in a Range Independent Channel

Consider the channel illustrated in Figure 2-1.  An idealized oceanic
wavegiide is assumed to be horizontally stratified and symmetric with respeet to
the angle dimension of a cylindrical coordinate system, making only the range and
depth dimensions of interest.  The waveguide is of depth I with houndaries
consisting of a pressure release surface at =0 and a bottom at = /. The
hottom may be either hard (non-propagating) or soft (propagating). but the former
is assumed for ease of development. A discussion of the propagating bottom
development is presented in the sequel. An arbitrary sound speed variation that is a
function of depth, but not of time or range, is assumed. For simplicity, a density
which is constani over depth is assumed; the approach can be easily extended to

include densities that vary with depth.

Let a harmonic point source of frequency f) be located at (r.z) = (0.2,). The
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Figure 2-1: An ldealized Range-Independent Oceaniec Waveguide

wave equation for the sound pressure may be written as

10 ((op) 2% L O o, ey 41

rar( 0r)+a-.- ( :) of RS ==z =~z ). {2.1)
where

p=p(r=t), (2.2)

and where S is the sound pressure level in gPa at a distance of 1 meter from the

source in an infinite uniform medium (the units of S are pPa - m). The factor of 2

‘ arises from the different normalizations of the impulse function in the evlindrie:l
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and spherical coordinate systems. The appropriate boundary conditions are

P(r‘onl) = o L] (2'3’
ap

—— =0, (2.4)
9z rHL

and a radiaticn condition at infinite range.

Taking the temporal Fourier transform of equation {2.1) and evaluating it at

the frequency of interest viekls the Helmholtz equation

Yo (o) B (BhV _ _aodd

ror (ror) + o:'-' + (2.-(;(:.7 p= "'j'-)»'s . t(. .") . (2.3)
where .

p= p(r,:,]o) - F[p(r,:,l)] If-/a ) (2.6)

Range independent normal mode theoiy for the hard bottom case then arises as a
natural separation of variables solution to equation (2.5). The depth functions o (3)
which provide the various mode shapes are the eigenfunctions of the one-
dimensional Helmholtz equation

d°s. 221\ 2 o
ek [(TI%) - “.’] =0, (2.7)

Co:

with appropriate bounidary conditions derived from equations (2.3) and (2.4). The
horizontal wavenumbers k; of the various modes are related to the associated
cigenvalues, Because of the nature of the houndary conditions, it is easy to cast this
problem into a Sturm-Liouville form [41], so that the mode shapes form a complete
orthonormal (CON) set. This CON set has three important properties. To begin
with, the functions within the set are orthogonal, so that

/‘” #ilz) eylz)

dx = for 7§ # k. (2.8}
0 o )
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The density g, is included here in analogy to the results obtained when the density
is allowed to vary with depth; for that condition, the reciprocal of the density
function acts as the weighting function in the orthogonality relation for the mode
shapes of pressure. Note that this differs from the results obtained for the mode
shapes of acoustic velocity potential, where the density term appears in the

numerator of the orthogonality relation rather than the denominator.

In addition to %eing orthogonal, the functions arc alko normalized. so that

H ¢
[ ) (29)
0

’

Finally, and most importantly, the compleleness or closure property gnarantees
that any arbitrary function of = can be completely represented by an appropriately
weighted sum iperhaps infinite) of the various ¢ {z).

Decomposing equation (2.5) on the mode set and using the delta function

expansion

:-z) = f: 4e) o) (2.10)

Po

leads to the range equation for each mode

1 d dR. 2 4r
;:l-;(rd—rl)-*.k?ﬁ":-l;i('r_)' (2.11)

This is a Bessel equation of order zero, having the two types of Hankel functions as
its solution. Such a result is expected, since the range dependence represents the
evlindrical spreading of each mode.  The radiation condition requires that the
Hankel function of the second Kind be selected for strietly outward propagation.

Note that if the temporal exponential in equation (2.1) were chosen to have the

@
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opposite sign, the proper choice to meet the radiation condition would be the
Hankel function of the first kind. At distances of more than a few wavelengths

from the source, the Hankel function may be replaced by its asymptotic equivalent

(Nkr) ~ (e e Abr = 2/4)
HEXk.r) el \ (2.12)
vielding
Hrat) m Y b(r) 6(z) e A%ht = ko), (2.13)
‘
where

D 2R ) S .
bi()-'o\/k:' o.(-d)e . (2.14)

Each term of the result has been conveniently arranged in three parts. bir)
plays the role of a range dependent modal amplitude, while éd=) provides the
normalized depth dependence that represents the shape of the mode and the
complex exponential provides the traveling wave phase advance. While the purpose
of this development has traditionally been to compute a sonnd pressure level as a
function of depth, the point of interest in this thesiz is rather the internal form of
each term and, particularly, the result for the modal amplitude given in equation

(2.14).

The resulting solution thus provides the follewing deseription of the
propagation (shown in Figure 2-2):

1. The source excites each mode to a level proportional to the size of the
made shape at the source depth; and

2, Each mode then propagates independently outward from the source as a
non-homogenenns exlindrical wave (since the wave amplitude varies with
depth) having its own unique wavenumber and depth dependence.
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Figure 3-2: Range-Independent Modal Propagation

Although the expression in equation (2.13) nominally extends over an infinite
mode set, only a finite number of modes actually propagate. Bevond a certain
mode number, the associated modal horizontal wavenumbers turn imaginary,
vitlding a decaying exponential in range rather than a propagating wave solution.
Such modes are known as being in culoff. At long ranges from the source, the
contributions to the sound pressure field from these modes in cutoll become
negligible, offectively limiting the sum to a finite (although possibly large) number
of modes.  The number of modes that need to be included in the sum may be

‘ further reduced by other effects on an individual case basis.  ‘Two examples are
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sclective madai excitation due to the deployment depth of the source and physical

attenuation processes which favor some modes over others.

Having completed the development for the condition of a hard bottom. the
more physically realistic case of a propagating bottom must now be addressed. .\
full development for a propagating bottom along the lines of Pekeris {64] has been
avoided, as it requires much snore mathematical complexity vet generates no
significant differences in the final result. Instead, the prepagating bottom results
are simply contrasted with thuse presented above to provide zome inzight into the

relationship between the two problems.

The primary  difference between the hard bottam  eondition and  the
propagating botfom condition occnrs in the definition of the CON mode set. The
lower boundary condition associated with equation {2.7) in the latter case no longer
allows it to be classified as a Sturm-Liouville problem, 30 that. a CON set of mode
functions cannot be guaranteed. However, it i3 still possible to define a set
consisting of a finite number of trapped mode shapes, These made shapes can he
made orthonormal through proper sealing, o that equations (2.8) and (2.9) are still
applicable if the range of integration is extended to infinity. This is reasonable,
since, for an inhmite half space bottom, the resulting sound pressure field akso

extends infinitely in depth.

The set of trupped modes is not complete, however, so that althongh the
results presented in equations (2.13) and (2.14) are applicable to the portion of
energy carried in the trapped modes, it is possible for energy not resideni in e
trapped modes to also contribute to the sound pressure field.  This additional
contribution is earried by the continuwunm of modes that propagate into the bottom,
and a further term involving an integral over the infinitely dense continunm made

set must be included in equation (2.13) to account for it. The esntribution can he
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expected to attenuate with range, however, as more and more of the continuum
energy is lost due to propagation into the bottom. At long ranges, the continuum
may be neglected, so that equations (2.13) and (2.14) still pertain; but with the sum
limited to the trapped modes. Thus, the net effect of the propagating bottom is
twofold: to change the range of the summation from the modes not in eutoff to the

trapped modes; and to increase the minimum range at which the result is valid.
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Figure 2-3: An ldealized Range-Dependent Oceanie Waveguide
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2.2 Normal Mode Propagation in a Range Varying Ch'umel

The most restrictive assumption made in the previous section iz the
characterization of the channel properties, including boundary conditions, as being
independent of range. To relax this assumption, one can assume a sound speed that
is now a function of both depth and range (see Figure 2-3). This change makes the
resulting partial differential equation inseparable, so that the approach of the
previous seetion must be abandoned. Instead, a partial separation of variables is
invoked by allowing the varicus mode shapes to vary in range as well. In other
words, as the modes propagate outward irom the source, their shapes are now
allowed to change as they encounter channel range variations, To find the range
dependent mode shapes, one must solve the equivaient of the one-dimensional
Helmholtz equation (2.7), now parameterized in range

9. 2z .,
oy [( ’0) -] o, =0, (2.15)

.? cl=r) ]

where

o= o zr). (2.16)

Suitable houndary conditions must also be included. The approach requires that
the associated eigenvalues, and thus the modal horizontal wavenumbers, also be
functions of range. If the discussion is again restricted to a hard bottom houndary
condition, a CON set of mode shapes can be found at any particular range.
Because the separation of variables is only partial, the resulting range equations

remain coupled; following Rutherford [72], one obtains
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1d [ 4R; a r )
ST (r'd_rl) + kx(r) R, = —j2S ¢ (2,r) ﬁ;‘l (2.17)

-3 [ (2 R+ 2 f‘;&) +B, ()R] .

where the coupling parameters are

"l(?‘fo deglz.r) ) e
By(r) = ¥ - kX r)/ P T ofzr) o fzr)ds (2R)

for ik 0 for i=hk

and
Aglr) =D _ f" L 24l ao‘(..r) (2.10)
ik dr 0 % or or dz. b

The assumptions implicit in the derivation of these coupling parameters are a
constant density and range invariant boundary conditions. Allowing the houndary
conditions to vary with range affects the form of the coupling coefricients [72].
However, most problems involving range varying boundary conditions can be recast
to have runge independent houndaries by the proper redefinition of sound speed and
density. The comments made previously concerning the inclusion of soft or

propagating bottoms are, in general, also applicable here.

Because the range equations presented in (2.17) are coupled. they are not
typically amenable to analytical solution, and further development bevond this
point involves either numerical evaluation or the application of approximations. s

might be expected, the resulting general solution is not very revealing:
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ple,id) = z R{r) ¢(zr) e Rl (2.20)

One particular approximation generates an important subset of coupled mode
theory that is more analytically tractable. Adiabatic mode theory arises by ignoring
the effects of the coupling coefficients in (2.17). This is equivalent to assuming only
very gradual channel variations in range, which is often the case in practice.
Dropping the coupling terms once again leads to independent range vquations. In
addition, the assumption of gradual range variations requires that, in the large

range limit, the solutions of these equations must be asymptotic to
R{r) ~ bfr)e 0" . (2.21)
The full adiabatic solution is then

Arst) =Y blr)afar)e R2pt = fo ki ede) (222
i

Unlike the range independent ease, it is not possible to find a general closed form
solution for b{r). The nature of the coefficient preceding the range delta function
on the right hand side of equation (2.17) does guarantee that b{r) are proportional

to both the source level S and the size of the mode shape at r = 0,

Adiabatic mode theory thus generalizes the physical picture of mode
propagation as follows (as illustrated in Figure 2-4):

1. The source excites each mude to a level proportional to the size of the
mode shape at the source depth, where the mode set is evaluated tor the
souree sound speed profile; and

2, Each mode then propagates independently ontward from the souree as a
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Figure 2-4: Range-Dependent Adiabatic Modal Propagation

non-homogeneous cylindricai wave (since the wave amplitude varies with
depth) having its own unique wavenumber and depth dependence. Both
of these are now allowed to vary with range. It is important to realize,
however, that in this approximation the modes still propagate

independently.

Full coupled mode theory further complicates the picture by including mode

conversion cffects. In this case, the various modes are allowed to exchange energy

in addition to varying their shapes and wavenumbers as they propagate down the

channel, so that they no longer propagate outward in a completely independent

faskion.
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2.3 Modal Source Description at a Far Field Recelving Array

While the descriptions developed above are quite useful when dealing with
underwater acoustic propagation theery, a further step is necessafy to convert them
into a form uscful in the context of signal processing.  Array theory deals with the
field at the receiver rather than at the source: therelore, it is appropriate to shift

coordinates to a svstem with its origin at some arbitrarily defined reference point




-5~
near the receiving array, and then to expand the field representation in the vicinity
of this new origin. Several approximations and assumptions can then be uszed to

simplily the resulting expressions.

Consider the diagram of the pair of two-dimensional horizontal coordinate
systems shown in Figure 2-5. The (r.0) coordinate system at the left represents the
polar coordinates in which the propagation problem has been solved. The (r.4)
coordinate system on the right represents the new receiver coordinates. with an
origin at the arbitrarily defined receiver reference point. This point. is assumed to
be located au range r, and angle #, in source coordinates. The angle J ix the
horizontal direction of propagation at the receiver reference point with respect 1o

the receiver coordinate system,

From the law of cosines, the source range r for any point (£.y) in recoiver

coordinates may be found to be

P g V14 2z/rg) cos 3+ Ay/rg)sin 3 + (e rgP + (w/e,)° . (229)

In the immediate vicinity of the receiver reference point, the receiver coordinate
offsets £ and y are small when compared to r,.  For this condition. the terms
containing these offsets are of first order, while the terms involving their squares are
of second order.  Expanding the square root as a binomial series and dropping all
terms bevond first order leads to

r ro+xcos:3+ysin,3. {2.24)

Neglecting the higher order terms is equivalent to approximating the evlindrically
propagating modes with ones that are planar in the immediate vieinity of the array.
In the sequel, the approximation in equation (2.24) is applied to all the sensors in

the receiving array. To guarantee that the approximation is valid, two restrictions
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are needed. First, the receiver reference point must be chosen to be close to the
array; second, the array aperture must be small compared to the source-receiver

range. Both of these conditions are easily met in practice,

Conversion of the range independent modal solution o the new coordinate
system simply requires the replacement of r in equations (2.13) and (2.14) with the
expression given in (2.24); retaining first order aceuracy in the phaze but limiting

amplitude terms to order zero only, one obtains

plF.=l) = Z a; 6(z) e A35ft = RF), (2.25)

where the veetor

= (z,9), (2.26)

[

and the vector
R; = (k; co3 3, k,sin J) (2.27)
i of magnitude k; and points in the direction of propagation. The modal amplitude
i5 now a function of only r,,
Q

,‘—.l. l.r é( )cj 2 = ki (2.2%)

For the range dependent cases, an additional assumption ol the horizontal
homogeneity of the channel over the aperture of the array is needed for tractability,

Given this assumption, the adiabatic theory solution (equation {2.22)) ean then be

converted to

pFat) = Z u; °i(:"'o) e ANt =R F1 (2.29)

i
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with
yis
a;= brg) e g ki ede., (230)

Here the magnitude of the wavenumber vector is the value of the horizontal
wavenumber evaluated at the receiver reference point k{ry). Conversion of the full
coupled mode solution (equation (2.20)) is more complicated, but resuits in the same
form as for the adiabatic solution with a dilferent definition of the modal amplitnde
a;. Because the channel is assumed to have no range variations over the aperture of
the array, the two sets of coupling coefficients A, and By vanish in this region. A\
far field representation of the solution of equation (2.17) that is valid over the

aperture of the array can be written as
r .
R(r) = R{r,) \/}‘_’ ¢ Hlrallr = 1ol (2.31)

where any energy scattered back to the array from channel range variations that
are bevond it has been ignored. The resulting solution is then has the same form as
equation (2,29), with the modal amplitude now defined as

a;= Rr,). (2.32)

Again, the magnitude of the wavenumber vector is that of & (r,).

It can be seen that all three approaches lead to tive same representation in the

region of the receiver. In vector notation this may be written as

p7.ol) = wH(7F.2) A e Pt (2.33)

It M modes are included in the model, A becomes an M X § column veetor, each

¥r.z) is abo an

clement of which is one of the complex modal anplitudes e

M X 1 column veetor with elements
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v(fs) = ofs) e AT (2.34)

where all mode shapes and wavenumbers are those for the vertical channel structure
found at the receiver. While the functional form of the modal amplitudes a; varies
depending on the particular theory chosen, in all cases they may be considered to be

constant across the apertuve of the array.

The bridge from equations (2.33) and (2.34) to equations (L.4) and (1.5} is now
straightforward, The total signal reccived on any hydrophone is assumed to consist
of the signal model just developed plus additive noise. If equarion (2.33) is then
evaluated at each of the N hydrophone locations in the receiving array. the resulis
collected into an N X 1 complex vector, and a quadrature demodulator used to
remove the harmonic time dependence, equation (1.1) iz recovered exactly, Each
row of the N X M steering matrix is comprised of the #% vector evaluated at a

different sensor location

R L2
e A hag |
—_ !+‘?g-:-2)
E= * . {2.35)
| !+(F'\o.:‘\') J
Comparison with equation (1.5) allows ¢, to be identified as
Ul-k = _;‘.'-F’- . (2.:‘6’




2.4 Summary

A mathematical model to describe the sound pressure field that a harmonie
point source imbedded in a waveguide generates at a distant receiving array has
been developed from first principles. This model has been presented in a form to
which optimal estimation theory can be applied. It haz L2en shown that range
independent mode theory, adiabatic mode theory, and coupled mode theory all lead
to the same model; only the nature of the modal amplitudes is different {veuations

(2.28), (2.30), and (2.32), ' apectively). To achieve this result, both of the range

dependent theories requ ditional assumption of horizental homogenvita of
the channel characteri. or the aperture of the array. Subject 1o this
assumption. the modal an. &3 can be considered constant across the array. For

the range independent and 5u  tic results, the modal amplitudes have heen shown
to be directly proportional 10 both the source level and the size of the mode shape

at the source depth.

The long range or far field assumption has been used to justify a number of
approximations. ‘These include the negleet of either the modes in cntolf or the
continuum modes, as applicable: the use of asymptotiely equivalent Torms for the
carious range functions: and the aceeptance of a local plane wave approximation in

place of the actual exlindrically spreading mode.

As seen by the areay, each mode appears to be a non-humogencous plane wave
propagating horizontally away from the source with unique horizontal wavenumber
and depth dependence. The depth dependence uf each made is defined by its mende
shape function; the various mode shapes have been shown to be orthonormal at any

partivular range.
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Chapter 3
The FRAM IV Data Set

The purpose of this chapter is to describe the details of the experiment dwring
which the data set to be analyzed was taken. The nature and general layout of the
experiment are first discussed. Following that are descriptions of the avoustic
source and the two receiving arrays available, one a horizontally deployed two-
dimensional array and the other a vertical line array. Some important conclusiois
about practical differences between horizontal and vertical arrays are included. Thic
details of the data acquisition and storage’system and a deseription of the actual
signals analyzed in this thesis are then presented. A discussion of the preprocessing

' employed prior to beamforming and an initial analysis of some of the preprocessed

data complete the chapter.

3.1 The FRAM IV Experiment

FRAM IV, conducted in the spring of 1982, was one of a continuing series of
multi-institutional Aretic Ocean research projects sponsored by the Office of Naval
Research. The experiment was designed to study the low frequency acounstieal and
geophysical properties of the central Arctic environment, Additionally, several
physical oceanography and bottom geology experiments were conducted: besides
characterizing the central Arctic region in their own right, these secondary
investigations  were  designed  te  provide concurrent  measurement  of  the
environmental parameters necessary to characterize the acoustic channel from a

theoretical standpoint.

‘ The experiment was conducted from iwo ice camps located on the central

rfr
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Arctic permanent pack ice. The larger of these camps was named FRAM, and was
established in the Barents Abyssal Plain, as shown in Figure 3-1. The hydrophone
receiver arrays and the data acquisition systems were located here. A second camp.
known as TRISTEN, was established about 300 km to the west of FRAM near the
Mid-Arctic Ridge, primarily for the purpose of deploying a high power. Jow
frequency acoustic source used to transmit tones and other, more complex
waveforms.  Explosive charges were also emplayed to generate impulsive source
data fur both acoustic and geophysical analyses. These charges were sot off from

various sites,

The FRAM IV data set has formed the basis for a number of recent papers:
several cover topics that are germane to this thesix. The report by ‘Tiemann, Ardai,
Allen. and Manley (78] provides a full analysis of the navigation data for the
experiment.  Dyer [32) and Makris and Dyer [50] summarize what is currently
understood about the nature and causes of Arctic smbient noise.  Dueckworth
[20] and Duckworth and Baggeroer [30] provide detailed investigations of the
bottom characteristics in the region near the FRAM camp.  Mellen and DiNapoli
[53) and DiNapoli and Mellen {25] characterize the propagation loss for the centeal
Arctie and attempt to quantify the effect of the Arctic ice canopy on thix
propagation loss,  Mikhalevsky [36), [57) investigates the temporal stability of tonal
signals propagated in the Arctic channel in some detail; although the data examined
in these studies were taken from the earlier FRAM 11 experiment. the results are
equally  applicable here.  Poleari [67)  characterizes the structure of  the
TRISTEN/FRAM acoustic transmission path.  Finally, Yang and Giellis [R1] have

recently attempted maodal decomposition from the FRAM IV vertical areay using

spatial Fourier technigques, with mixed success,
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Figure 3-2: Drilt of the FRAM and TRISTEN lce Camps

3.2 FRAM IV Navigation Data

The FRAM receiving camp was established at 61N, 23,1 FE on 23 March,
1982 (see Figure 3-2). It drified approximately 260 km to the southwest over the
course of the experiment, and was abandoned at 82,6 N, 6.9 E on 11 May. The
TRISTEN source camp was established at 8£2°N, 4.6 W on 26 March: it was
manned until 26 April, during which time it drifted 90 km south to 83.4 N, 5.8 W,
The acoustic data of interest was transmitted from TRISTEN to FRA: . during two
separate periods of time, 6 to 8 April and 16 to 19 April.  Figure 3-2 indieates
representative positions for each of these periods, while Tables 3-1 and 3-1l tabulate
the full navigation data for the same positions.  All the data presented here has

been derived from reference [78].
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Date: 6 Apr 82
Time: 1800
FRAM Posit: 83.830°N 16.82°E
TRISTEN Posit: 83.84°N  5.55°W
Array Rotation: 15.6° east of true North
TRISTEN Azimuth Angle: 88.5°

TRISTEN/FRAM Range:

Date:

Time:

FRAM Posit:

TRISTEN Posit:

Array Rotation:
TRISTEN Azimuth Angle:
TRISTEN/FRAM Range:

Date:

Time:

FRAM Posit:

TRISTEN Posit:

Array Rotation:
TRISTEN Azimuth Angle:
TRISTEN/FRAM Range:

265 km

TApr82

2100

83.76°N 1608 °E
R38N 5.88°W
15.9° east of true North
86.1°

262 km

8 Apr &2

1530

&3.72°N 1596 E
83.78°N 583°'W
16.2° east of true North
8.1°

262 km

Table 3-I: TRISTEN/FRAM Navigation Data for the Horizontal Array Data Set

3.3 Horizontal Azimuth Angle Conventions

Belfore continuing, a short comment on the measurement conventions used in
this work for horizontal direetion angles iv in order. Whenever incoming signal
horizontal azimuth angle values are quoted, the convention implied throughout the
thesis is that the azimuth angle has been measured from the reference direction fo
the direction in which the siynal is propagaling in a clockwise direction.  This
makes the azimuth angle exactly the reciprocal angle of the more traditional
bearing angle.  As a simple example. a signal propagating from a source to the

northwest arrives on a bearing of 315 ; since the signal itself is traveling towards
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Date: 16 Apr 82
Time: 1430
FRAM Posit: 83.55°N 15.04°E
TRISTEN Posit: 83686°N 5.70°W

Array Rotation:
TRISTEN Azimuth Angle:
TRISTEN/FRAM Range:

Date:

Time:

FRAM Posit:

TRISTEN Posit:

Array Rotation:
TRISTEN Azimuth Angle:
TRISTEN/FRAM Range:

Date:

Time:

FRAM Posit:

TRISTEN Posit:

Array Rotation:
TRISTEN Azimuth Angle:
TRISTEN/FRAM Range:

17.6 * east of true North
85.6°
255 km

17 Apr 82

1930

R340°N 1426 E
83.66°N 569 WV
17.4° east of true North
868"

254 km

19 Apr 82

0300

83.48°N 1477'E
8364°N 559°W
17.1" east of true North
8§7.2°

253 km

Table 3-I1: TRISTEN/FRAM Navigation Data for the Vertical Array Data Set

the southeast, however, its azimuth angle is 135°.

Azimuth angles are reported in a range from 0" to 360 ., and are referenced
to the north leg of the horizontal array rather than true North. The reference is
chosen so as to be fixed with respect to the array. Because the ice from which the
array is suspended is free to rotate relative to the global coordinate system. the
relationship between the array and true North is not static. In actuality, the net
array rotation turns out to be small. The direction of the array’s north leg varies in
a band of only 2.5° around its median value of 16..4 east of true North during the

period of the main acoustic experimentation: somewhat larger shifts are observed

towards the end of the experiment. None the less, even these small variations are
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significant, especially when high resolution beamforming techniques are employed.

Tables 3-1 and 3-]1 both include appropriate array rotation data.
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Figure 3-3: Source Levels for the TRISTEN Source

3.4 The TRISTEN Low Frequency Source

A modified HLF low frequency source was deployed to a depth of 91 m at the
TRISTEN camp. Approximately 150 hours of signals were broadeast in a frequency
range from 5 to 110 Hz. Several different waveform types are included in the signal
set. Of interest here are a series of tonal signals in the range from 3 to 71 Hz. The
typieal signal format consists of one tone per hour, with the source on continuonsly

for the first 55 minutes and then off for the last 5 minutes of the hour. Scheduling

constraints often forced more abbreviated formats: most- of the horizontal array
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data used here was broadeast at half-hour intervals rather in the full hour format,
for example. The source has a rated frequency stability of better than one part in
10%; it can therefore be considered to be temporally coherent over the full duration

of any signal investigated in this thesis. Figure 3-3 provides a plot of source levels

versus frequency in the range from 5 to 80 Hzx for the TRISTEN source. This data

was extracted from reference [26].
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Figure 3-4: Arrangement of the FRAM Receiving Arrays
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3.5 The FRAM IV Recelving Arrays .

Two receiving arrays were available at the FRAM camp. A two-dimensional
horizontal array consisting of 26 elements was deployed through the iee and
suspended on cables to a depth of 81 m. The net gain to the recording sysiem was
-159 dB re 1 v/uPa, with a flat [requency response to below 2 Hz. As shown in
Figure 3-4, the array was deployed in an cross-shaped conliguration. Each leg of
the array had an aperture of about 1 km, with individual elements spaced

approximately logarithmically from the center.

The second array was madie up of 28 elements and extended vertically into the
water ceiumn to a depth of approximately 1000 m. Since the bottom depth at the
receiver camp averaged 3800 m, this coverage represents the top 257 of the
channel. The elements in the array were spaced approximately linearly. The array
was located about 30 m to the southwest of the center of the horizontal array. as is
also indicated on Figure 3-4. The net gain from the water to the recording system
was =121 dB re 1 v/uPa, with the exception of a few partienlar hydrophones where
the gain was reduced to -127 dB in order to reduce amplifier saturation.  The

frequency response was flat above 6 Hz. A 500 Ib weight was hung from the bottom

of the array to stabilize it against current action.

Both arrays suffered to varyving degrees from two related problems endemic to
suspended sensor systems, sensor displacement and strum. Sensor displacement is
the offset of a particular hydrophone from its nominal position caused by current
drag on the hydrophone and its support cable. Since only the position at which the
sensor is deployed though the ice is known, such displacements translate into phase
errors in the beamforming process.  Simple delay-and-sum beamforming theory

indicates that sensor displacements become significant when they begin to reach
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magnitudes of approximately one quarter wavelength; the problem obviously gets
more severe with increasing frequency or more sophisticated beamforming
algorithms. Moda! decompositions may be even more affected than other techniquex
when, as for the vertival array, the errors occur across the array in a congistent
fashion, causing the array to become tilted. This sensitivity is investigated in detail
in Chapter 6. Time varying sensor displacements are possible due both 1o
variations in the environmental conditions and possible pendulum oscillations of the
sensors.  As discussed below and in Chapter 7, however, the time variations of
sensor displacements observed in the data appear to be relatively small when

compared to the static offsets,

Strum is the vibration of the suspension eable of a sensor due to vortices shed
by, the surrounding current flow. This vibration causes slight oscillations in the
sensor depth; since the ambient pressure is a function of depth, these depth
excursions cause pressure field variations tc which the sensor then responds,  As
opposed to sensor dizplacement, which occurs on time scales so large that its
primary effeet is a phase modulation of the received signal, strum energy is
concentrated at the lowest frequencies of the acoustic domain, and forms an
additive noise source from which the true signal must then be separated.
Strumming action generally appears to consist of a fundamental frequency and a
number of strong harmonics. These harmonics typically occupy the frequency range
below 10 Hz for horizontal array sensors; significant harmonies can be found at
frequencies as high as 30 Hz during severe episodes, however. Because different
horizontal hydrophones exhibit varying strum patterns, spatial processing
diseriminates well against strum energy.  The greater effective diameter of its

support cable causes strum effects for the vertieal array to occupy a lower frequency

range: strum energy above 10 1z is rarely observed in vertieal array data, making it
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much less of a problem than for the horizontal array. These observations agree
with strum frequency predictions based on the Strouhal number, which vield
expected strum frequencies of 28.5 Hz for the horizontal array and 5.1 Hz for the
vertical array for an upper limit current of 0.8 kt [61). Cable diameters of 0.125 in
for the horizontal array elements and 0.7 in for the vertical array are assumed in

these caleulations.

3.6 The Effects of Hydrophone Sensitivity Mismatches

An important difference between the horizontal and vertical arrays involves
the effect of variations in hydrophone sensitivity and amplification gain across the
arrays. For a horizontal array of reasonable aperture, the signal received at each
sensor is a time shifted replica of that found at other hydrophones, as is
demonstrated in Figure 1-1. This assumption is often used in horizontal array
beamforming to eliminate variations in the receiver hardware by artificial
normalization of each time series before beamforming. This can be done heeause a
horizontal array uses the signal phase rather than its amplitude to develop spatial

information.

Since a vertical array samples the modal structure of the channel, however.
signal amplitude variations between different hydrophones are both expeeted and
desired; a normalization scheme as might be used on a horizontal array is no longer
applicable.  Thus, the nature of the data and the processing make hardware
uniformity between channels a much more important issue for vertical arrays than
for horizontal arrays. No indication of this type of problem is seen anywhere in the

FRAM IV data set; none the less, the issue must be carefully considered whenever

one is dealing with data taken from vertical arrays,
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3.7 Sensor Displacement Predictions for the Horlaontal and Vertical

Arrays

In general, the effect of sensor displacement on the horizontal array is
significantly less severe than its effect on the vertical array. This is to be expected,
because the vertical array extends approximately ten times deeper into the water
column than the horizontal array sensors; the longer scope then makes it more
sensitive to current effects. The purpose of this section is to investigate the
significance of the sensor displacements likely to be encountered in practice for hoth
horizontal and vertical array sensors.  As the purpose is not to make precise
quantitative predictions, but rather to provide some feel for when sensor
displacements must be considered and when they might be safely ignored. some very

simple hydrodynamic approximations suffice.

The actual sensor displacement is the primary parameter of nterest for a
horizontal array sensor. For the vertical array, however, things are somewhat more
complicated. as many sensors are suspended from the same cable.  Obviously. the
maximum sensor  displacement  achieved is important: this  displacement  will
generally be found at the deepest sensor in the array, although more complieated
geometries are paossible.  Additionally, however, the distribution of displacement
along the vertical array is significant.  One simple way of parameterizing this
distribution is by some type of tilt angle, representing the slope of some notional
line with which one has replaced the actual array shape. Several different tilt angle
definitions are possible. The one used here is simply the angle made with the
vertical by a line drawn through the array anchor point at the surface and the
bottom sensor. A more rigorous definition is introduced in Chapter 6. where the

justification for such an approximation is discussed. A similar parameter of interest

for both horizontal and vertical arrays is the slope of the suspension cable at the
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surface, since it provides a check against field experience.

The sensor displacement problem may be modeled in a very simple fashion by
assuming the sensor suspension cable to be a uniform line of length // with one end
fixed to the ice at the origin and the other end attached to a concentrated mass of
weight IW° that represents the weight normally deployed at the end of the cable for
current stabilization. This model is applicable for both the horizontal and vertical
arrays, with one difference: for the vertical array, the mass of the line mnst be
considered, whereas for the horizontal areay it i3 negligible. Let w be this weighn
per unit length of the cable. To keep the hydrodynamics simple, the line is asswmed
to have a uniform diameter d. and the current Vis assumed to he eonstant in depth.
The fiest assumption is not strictly correct. for the vertical array. since the actual
arrangement of the support cable and the electrical connections from the
hydrophones to the surface is rather complicated; this is compensated for by using
some type of effective diameter over the length of the eable.  Similarly. basic
aceanography indicates that the second assumption is not very realistic vcither.
However, hoth of these assumptions will more often cause the displacement
estimates at the deepest sensors to be too large rather than too small. .\ secondary
issue involves the three-dimensional nature of the array shape, which is not reflected
by the constant current assumption. ‘This problem is not serious, kowever, because
in the sequel it is not the actual array shape that is important, but only its

projection in the vertical plane of propagation.

Assuming a steady state situation, the primary effect of the current is to
provide a constant horizontal drag force per unit leagth f on the line and a total
drag force F on the concentrated mass suspended from it. The drag force per unit

length of line is estimated from two-dimensional Reynolds number theory [61] to be



Cp oV
f=2—, (3.1)

where p is the density of water and C'pis a two-dimensional drag coefficient that ix

a function of the Reynolds number

R = -‘-i . 3.2)

v

Here, o+ i3 the kinematie viscosity of water. A\ similar but somewhat less roliable

estimate may be made for F.

Given estimates for the (wo drag forees, one ean then solve the resulting
staties problem for the shape of the line as a funetion of depth in a straightforward

manner. The solution i3

Az)=alz=bIn (1 - z/c)}. ] (3.3)
where

fa == ‘—,U. (3.1}

b= ?— % . (3.9)
and

c= '7:- +H. (5.6)

For the vertical array, H is assumed to he 960 m, and w and W may be taken to be
17.8 N/m (4 Ib/m) and 2224 N (500 1b), respectively, Using an effective cable
diameter of 0.7 in and a current of 0.8 kt {a reasonable upper limit for the speed of
ice movement observed in the Aretic), the drag forces fand F are estimated to be

1.5 N/m and 10.5 N, respeetively, These numbers give values of 0.0587 for a. -11% m

for b, and 1083 m for c.
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Equation (3.3) is plotted as a function of depth in Figure 3-5 for the values
just discussed. The results of a more sophisticated model developed at the Naval
Research Laboratory (NRL) [85] are also shown for comparison. The two models
agree quite well in the first 600 m, and then diverge slowly after that, A maximum
difference of about 10 m between the two predictions occurs av the bottom of the
array. Several different factors probably contribute to the difference hetween the
two madels, but the most important is the assumption of a current that is constant

with depth made in the simpler medel.

As shown in Figure 3-5, the sensor displacements indieated fur the lowest
hydrophones are in the 50 to 60 m range, making them a signifieant fraction of a
wavelength at even the lowest frequencies of interest.  The array tilt as measured
from the anchor point at the surface to the bottom sensor is 3.6 3 the slope of the
array at the surface is 5.0°, which agross well with field experience, in which slopes
of no more than about 5 or 6* have heen observed. The equivalent values for the
NRL model are 3.0° and 3.87, respectively. These results are in general agreement
with other field tests earried out by NRL in the Arctic for the same areay [60). I is
important to note that the magnitude of the tilt angle is Mndamentally proportional

to the square of the current 1,

The same approach ontlined above can be used for the horizontal areay
sensors, In this ease the weight of the eable w is negligible, and the resultant shape

of the line takes on a somewhat simpler parabolic forn
:) = ';‘,[F-}- S =z2)). (3.7)

For a horizontal areay hydrophone, /7 is 91 moand 3 may be taken to be 133,40 N
(30 1b). For a cable diameter of 0,125 in and a current of ONX Kt, the drag forees f

S Srird

and Fare computed to be 0.277 N/m and LGSR N, respeetively. These numbers
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vield an offset of about 10 m, which corresponds to a quarter wavelength at roughly
35 Hz, and a cable slope at the surface of 11.4". These results agree with with
operational experience, which indicates that beamforming degradations are [first

noticable in the 30 to 40 Hz frequency band.

Several conclusions can be drawn from this section. The most important is
that sensor displacements for ihe horizontal array can be expected to be negligible
below about 30 Hz, while these of the vertical array can never be totally ignored.
Additianally, typical offsete for the verticsl array can be expected to be aboui five
times those of the horizontal array, primarily due to the much longer array scope.
Finally, the angle that the vertical array makes with the true vertical can be
expected to be limited to a range of about 5° based on the range of currents likely
to be encountered in the central Arctic. All of these observations are of importance

in Chapter 6, where the problem of vertical arr'ay tilt is examined in detail. -

3.8 The FRAM IV Data Acquisition System

The recording system is illustrated in Figure 3-6. It consisted of a
minicomputer-based digital data acquisition and storage svstem.  Twenty-four
channels of information, each sampled at 250 Hz, were digitized simultancously: the
resulting digital data were then stored on specially formatied 1600 BPI magnetie
tapes. An analog filter with a roll off of 48 dB/octave above the corner frequency
of 80 Hz prevented aliasing, and a floating point conversion scheme preserved the
required dynamic range. The well matched phase responses of the various channels
preserved the signal phase synclironization regquired for beamforming. The input to
each of the 24 channels was selectable via a pateh panel. Several different sensors

sets were recorded during the course of the experiment. Further technieal details of

the recording system can be found in Prada, et al. [71).
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Figure 3-6: The FRAM IV Digital Recording System

The FRAM IV acoustic data is classified according to the array configuration
(i.e., the sensor set) being recorded when the data was acquired. Two maior types
of array configurations exist. The data taken from 6 to & April were recorded from
only horizontal array hydrophones. Over this period minor variations were made in
the exact hydrophone set recorded, resulting in  slightly different  array
cotifigurations for different signals.  These variations are not significani when
considered in terms of theoretical array performance, however. ‘The data taken
from 16 to 19 April was recorded from a mixture of harizontal and vertical array

hydrophones.  The details of the sensor set chosen for this configuration are
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provided in Table 3-III. Of the most interest here are the last eighte;'n channels,
which werz used to record selected hydrophones of the vertical array; the depths of
the sensors recorded are included in Table 3-1lI. In processing the data taken from
this vertical array configuration, only these channels have been used, so that an
cighteen element fully vertical array has been effectively synthesized. This has been

done to allow assessment of the operational utility of a true vertical array.

Channel Description

1 Horizontal array center phone

2 Horizontal array northernmost phone

3 Horizontal array southernmost phone

4 Horizontal array easternmost phone
5 Horizontal array westernmost phone
. 6 Geophone

7 Vertical array phone at 960 m
] Vertical array plione at 860 m
9 Vertical array phe "2 m
10 . Vertical array phone w 400 m
11 Vertical array phone at 630 m
12 Vertical array phone at 570 m
13 Vertical array phone at 510 m
. 14 Vertical array phone at 450 m
15 Vertical array phone at 300 m
16 Vertical array phone at 350 m
17 Vertical array phone at 330 m
1R Vertieal array phone at 270 m
19° Vertical array phone at 210 m
20’ Vertical array phone at 180 m
21 Vertical array phone at 140 m
22 Vertical array phone at 90 m
23 Vertical array phone at 60 m
24 Vertical array phone at 30 m

. 3 [
These hydrophones had net gain to recording system of
=127 dB rather than the nominal -121 dB {re 1 pPa/v).

Table 3-I1I: The FRAM IV Vertical Array Recording Configuration
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3.9 Detalls of the Vertical Array Data Set

The objectives of this thesis make the data recorded from the vertical array of
primary interest. The available data set consists of tonals at fourteen different
(requencics between 5 and 71 Hz recorded from 16 to 19 April.  These are listed in
Table 3-IV. Many of the [requencies were broadeast several times over the course
of the four days; only the longest representative data segment at each frequency has

been chosen for analysis here. The three lowest frequenciez were never detected in

cither the vertical array data set or the more extensive horizontal array data set.
This is most likely due to insufficient signal to noise ratios at these frequencies. Not
only does the source exhibit significancy lower signal levels below 15 Hz {as shown
in Figure 3-3), but, in addition, Arctic ambient noise tendls to increase with

decreasing frequency in this band {32].

o ' Frequency  Time Date  Duration
' 5.00 Hz Not Detected
10.00 Hz Not Detected
11.75 Hz Not Detected

15.00 Hz 0310 19 Apr 2 10 min

17.75 Hz 1430 16 Apr R2 55 min

20.00 Hz 0225 19 Apr 32 35 min

23.50 Hz 0330 18 Apr &2 55 min

30.00 Hz 0320 19 Apr &2 10 min

35.25 H» 0430 1R Apr &2 55 min

35.50 1z 1030 17 Apr 82 55 min

47.00 Hz 1330 17 Apr 82 55 min

53.25 Hz 0930 17 Apr 32 55 min

55.00 Hz 1130 17 Apr 82 55 min

71.00 Hz 1530 17 Apr 82 5% min

Table $-IV: The FRAM IV Vertical Array Data Set




-70-
3.10 Detalils of the Horlzonial Array Data Set

To confirm the results generated from the vertical array data set, a smaller
number of tonal signals selected from the more extensive horizontal array data set
have also been analyzed. The particular segments chosen are listed in Table 3-V.
In general, the frequencies taken from the horizontal array have been chosen to
closely match those available in the vertical array data set. Several of the segments
are rather short, making them inappropriate for use in investigating long term
signal stability issues; no;ne the less, they are still valuable for comparing received

signal levels with those of the vertical array.

Frequency Time Date Duration
15.00 Hz 2330. 7 Apr&2 30 min
17.75 Ha 1800 7 Apr &2 30 min
23.50 Hz 1830 T AprR2 30 min .
27.00 Hz 1530 R Apr &2 30 min
35.25 Hz 1930 7 AprR2 30 min
47.00 Hz 2030 7T Apr &2 13 min
53.25 Hz 2000 T Apr 82 & min
70.00 Hz 1800 6 Apr 82 30 min

Table 3-V: The FRAM IV Horizontal Array Data Set

3.11 Preprocessing of the Data

The extensive nature of the data set (the signal set exceeds 1500 Mbytes of
data as recorded in the field) makes analysis of the data in a raw form inzpractical.
The preprocessing scheme shown in Figure 3-7 has therefore been developed to filter
and compress the data set to a tractable size. The field data for each sensor
(sampled at 250 Hz) is initially demodulated and low pass filtered to produce a
complex time series of the signal amplitude and phase. For reasons of efficieney and

phase stability, the demodulation is implemented in the requency domain. through
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Figure 3-7: The Preprocessing Scheme

the use of bin shifts in the FFT of the data. This approach has the disadvantage
that nominal signal frequency can not be achieved exactly; the 192 point length of
the FFT used provides resolution only to within £15 mllz of the desired frequency.
The need to generate quadrature sinusoids with adequate phase stability over the
signal durations involved is avoided, however: a typical signal of one hour in length
spans about 10% cveles.  With the frequency domain implementation, this phase
stability is controlled only by the frequency stability of the highly aceurate sample
clock.  The scheme also increases computational efficiency by allowing the
simultancons implementation of a Parks-McClellan FIR low pass filter [63] in the

frequency domain,  The amplitude and phase responses of this 399 point filter are
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Figure 3-8: Parks-McClellan FIR Filter Frequency Response

presented in Figure 3-8, and its characteristics are provided in Table 3-V1. The
filter is designed to provide as narrow a passband as possible while retaining
adequate cutoff levels in the rejection band. The filter length is limited by the
particular Parks-McClellan algorithm available, which can handle no larger than
100 point filters. After complex demodulation and low pass filtering, the data is
then decimated by a factor of 40 (to a 6.25 Hz sample rate); the FIR filter

characteristics guarantee that the Nyquist criterion is met,

Following this first stage of prepro <sing, an identical second stage of

complex demodulation, low pass filtering., ana decimation is accomplished.  The

.
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second stage processing provides further refinement of the demodulation frequeney
and a tighter low pass filter, allowing reductions in the number of data points to
convenient levels. Because of the reduced sampling period at the input to the
second stage, a demodulation frequency resolution of better than 1 mHz can now he
achieved. The FIR filter of Figure 3-8 is again applied, this time resulting in a
passhand of 12.5 milz (compared to the 500 mliz bandwidth available in the first
stage). Finally, the data is once more decimated, this time by a factor of 10,

First Stage Second Stage

Data Sample Rate: 250 Hz 6.25 Hz
Passband:  0- 250 milz 0-6.25 miz
Passband Bandwidth: 500 milz 25 milz
Nominal Passband Gain: 1.0 1.0
* Passhand Ripple: 0.35 dB 0.35 dB
Transition Band: 250 - 1500 mHz  6.25 - 37.5 mllz
Pass plus Transition Bandwidth: 3.0 Hx 5 miz
Nominal Stopband Gain: 0.0 0.0
Sivpband Ripple:  -47.75 dB -17.75 dB

" Table 3-VI: FIR Filter Characterities

Both stages of the preprocessing deseribed above have been carried out on all
24 channels of data simultancously, resulting in preprocessed complex time series
that are demodulated to within 1 mHz of the nominal signal frequeney and then
very closely filtered around that frequeney. The final sample frequency is 0.625 Hz
(equivalent to a sample period of 1.6 sec), providing approximately 2000 data points
per channel for a signal of 55 minute duration. As the correlation length of the
second stage low pass filter is about 20 post-decimated points, these 2000 points
represent roughly 100 independent degrees of freedom. Further details of the digital

signal processing involved can be found in reference [68].
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3.12 An Analysis of the Preprocessed Data

A great deal of insight can be gained just by studyving the preprocessed
complex time series of the various vertical array channels. Figure 3-9 displays the
log magnitude of the these time series for the 47 Hz tone from the the vertical array
data set, while Figure 3-10 shows the corresponding phase traces for the same
signal. Data from all cighteen vertical array sensors are included: the depths of the
various sensors are indicated on the left. A 40 dB per inch scale is used on the log
magnitude plots; the phase plots cover the range from -z to z and display only the
principal value of the phase. The time axis spans a range of 65 minutes (3900 sve),
The data displayed here in Figure 39 and subsequently in 3-11 are hoth
uncorrected for the hydrophone sensitivity, making the amplitude levels only
relative. In Chapter 7, where the data set is studied in much more detail. all
amplitude levels presented are absolute and referenced to 1 yPa. Note that for the
present displays, the decreased sensitivities of the vertical array  hydrophones
located at 130 and 210 m cause their levels to appear 6 dB lower than they actually

are.

The signal begins to be seen about 100 seconds into the trace and has the
expected duration of 3300 seconds, ending just before the end of of the trace. It i
casily distingunished on most of the channels; signal to noise ratios of about 30 B {in
the 12,5 miz bandwidth of the final preprocessing filter) are typically observed in
the log magnitude traces. The general slope of the phase traces is due to residual
mismatch between the received frequeney and the demodulator frequency.  The
negative value of the slope indicates that the demodulation frequency is greater
than the received frequency, while the magnitude of the slope is about 1 eyele per

hour, corresponding to a mismateh of 0.3 mbz. OF this error, 0.1 mllz is due 1o the

difference between the actual demodulator frequeney and the nominal souree
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frequency. The remaining 0.2 mHz is attributed to a small amount of Doppler shift
caused by source-receiver motion, and corresponds (o a relative opening range rate
of about .01 kt. The size of this result agrees well with the ice drift speeds
experienced at the FRAM camp [78] (no Arift speeds were available for the
TRISTEN camp). The slight change in phase slope towards the ond of the signal

indicates that the drift rates were not constant over the full duration of the signal.

In general, the temporal stability of both the log magnitude traces and the
phase traces is exceptional. What variations do exist may be broken into short term
Mluctuations that have time scales of minutes, and longer term fluctuations on the
order of tens of minutes. That no signifieant fluctuations exist with time seales of
seconds or smaller is evidenced by the demonstrated ability 1o coherently process
the data in a 12.5 miiz bandwidth without loss of signal power or phase consisteney,
The shory term fluctuations are almest completely negligible on tracez of adequate
signal to noise ratio, and generally become more pronounced on both types ol traces
as the SNR deereases.  This support: the supposition that the short term
finctuations are probably due to background noise. sinee the other two likely eanses,
temporal channel variations and array movement, wonld not be expected to show as
much dependenee vn SNR. The cause of the longer term variations. particnlirl)
those in the log magnitude traces, is more problematic,  Cae example is the deep
fade exhibited on the 90 m hydrophone over the last third of the signal: other
examples of smaller fades can be seen throughout the data.  The cause of these s
not well understood,  They are probably most attributable to ehanne! variations
over time, which can be generated in two ways: by actual temporal variations in the
physieal strueture of the channel, and by variations in sonree-receiver rang» due to
relative fee drift, 1t is possible that at least some of these variations are related to

longer term array movement eansed by variations in the effective current incident
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on the array. The change in the signal Doppler noted above i3 one indication that
this current might not be constant over the full duration of the signal. Navigation
data also indicates some changes in drift velocity over the length of the
transmission.  Theoretically, however, it is difficult to jus. ¥ the signal level

variations observed from just small changes in sensor offset.

While the general quality of both sets of traces is excellent, some noticable
exceptions oceur. One example is the pair of hydrophones at 330 and 330 m. As
above, the poor quality of these traces appears to be caused by the abnormally low
signal to noise ratios exhibited on these hydrophones. After a study of all the data,
it is difficult to support the hypothesis that these low received signal levels are,
caused by instrumentation problems. First, just the evidence of coherent {if noisy)
phase traces with the proper average phase ramp indicates that these sensors are at
least partially responding to the actual acoustic signal. Additionally, the channeis
exhibiting low signal levels tend to be closely grouped in depth, as seen here.
Finally, the particular groups of low SNR sensors are frequency dependent: that is,
the particular hydrophones exhibiting low signal levels change when the frequency
being transmitted changes.  As an example, consider the log magnitude traces
exhibited in Figure 3-11 and the associated phase traces illustrated in Figure 3-12,
These are identical in format to the data displayed in Figures 3-9 and 3-10.
including the channels displayed, but are for the 17.75 Hz signal from the vertieal
array data set. Here it is the very lowest sensors in the water column, the two at
R70 and 960 m, which display the lack of sigral to noise ratio. One must then
conclude that these low SNR channels actually represent nulls in the vertieal
structure of the signal field, caused cither by nulls in some dominant mode shape or

by the cuherent interference of multiple modes that might be present.

The Iatter hypothesis is strongly supported by another ahservation that can be
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Figure A-11: Preprocessing Output Time Series- Vertical Array
Sensor Magnitudes at 17.75 Hz (part 2 of 2)
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made from this raw data. If a single dominant mode were present and the array
were truly vertical, then all the phase traces would exhibit either identical absolute
phase, or would be shifted by = after going through a null. An casy way to judge
the relationship of the absolute phase between sensors is to note the point at which
phase wrap around occurs; for two channels to have identical absolute phase, the
wrap arcund must occur at the same point. in the trace. The phase traces displayed
in Figure 3-10 most certainly do not exhibit either identical absolute phase or =
phase shifts; moreover, it is very difficult to explain the phase shifts exhibited in
terms of array tilt awny from the vertical. In o r to explain the shifts of just the
top three channels, (those at 30, 60 and 90 m) in terms of array tilt, it is necessary
to assume that the local slope of the array near the surface is about 7.5 in the
plane of propagation, about double the value shown in Figure 3-5 and well outside
the range of reasonable array tilts. Therefore, it,' is reasonable to assume that the
data displayed in Figures 3-8 and 3-10 include a number of reasonably coherent

interfering modes.

For comparison, consider the data displayed in Figures 3-11 and 3-12, which.
as mentioned earlier, is the output of the preprocessing for the vertical array data
taken at 17.75 Hz. Although the data at first glance is similar to the 47 Hz data
just presented, a closer inspection reveals some very interesting differences,  First,
notice the presence of two strong events, one just hefore the start of the signal and
the other about 600 seconds later. These are known to be blasts from an airgun
that was deployed near the FRAM ice camp.  Note that the signal phase tracks
through the second blast in a reasonable fashion. In general, the signal to nojse

ratio is slightly lower than that encountered earlier. and the short term variations.

particularly those of the phase traces, refleet the inereased relative noise level, The

frequency mismateh with the demodulator is somewhat higher (about 1.1 mHz) but
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is still well within both the bandwidth of the filter and the range of reasonable
Doppler shifts for source-receiver motion. Additionally, the Doppler shift appears to

be more constant over the signal duration than that observed previously.

The most important difference between the two sets of data, however, is the
way the absolute phases align in Figure 3-12. This is a good example of the
absolute phase alignment discussed above, leading to the conclusion that a single
mode dominates the vertical structure of the signal at this frequer:y. Here, the
dominant mode must be the first, since no = phase shifts (corresponding to sign
changes in the mode shape) are observed down the array. Anticipating the results
of Chapter 4, the relative levels of the log magnitude plots as a function of depth
also indicate a dominant first mode, particularly the low SNR levels of the bottom
sensors in the water column (the 870 m and 960 m traces); the significant extent of
the first mode at 17.75 Hz is only about 800 m. Note that the traces for the
hydrophones at 180 and 210 m are offset by 6 dB from the remaining traces, due to

their different sensitivities (as indicated in Table 3-111).

The two sets of traces just presented are representative of the outputs of the
preprocessing for both the horizontal and vertical array data sets.  For all the
signals detected, signal to noise ratios fall in the 15 to 0 dB range for the final
filter bandwidth of 12.5 mllz. and both stable log magnitude and phase traces are
observed. The short term variations (those on the order of minutes) on both type of
traces appear to be related to background noise corruption, since their size appears
to vary as the SNR observed at the hydrophone varies. Some longer tern signal
variations on scales of tens of minutes are observed: while their cause is not well
understoad. it is possible that array movement is partially responsible. although it is
unlikely that this is the sole cause, This leads to the conclusion that the vertieal

array may be considered statienary for periods of up to 10 or 20 minutes: it ean
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probably not be considered constant over periods of an hour or longer, though.

3.13 Summary

The FRAM IV Arctic Acoustic Experiment has been summarized, including
descriptions of the general locale and arrangement, the scientific objectives, the
equipment. used, and the data set of interest in this thesis. The data presented here
consists of a rich set of tonals in the frequency range from 5 to 71 Hz. These were
broadcast from the low frequency sourcédeployed at the TRISTEN ice camp. and
then propagated roughly 250 km to the nmiﬁ FRAM ice camp.  Here, ther were
received on bhoth of the available sensor arrays, and were recorded in a digital

format on a 24 channel acquisition system.

The nature of the two arrays has been discussed in some detail, providing
some insight from an engineering viewpoint into the non-ideal aspeets of vertical
arrays versus those of horizontal arrcys. In general, it may be said that the process
of designing and implementing a good vertical array is much more demanding than
the equivalent development of a horizontal array. In investigating some of the
possible difficulties, useful estimates of their various magnitudes for the FRAM
arrays have been made. In particular, maximum sensor offsets of about 10 m and
50 m can be expected for the FRAM IV horizontal and vertical arrays, respectively.

For the rertical array, this corresponds to tilt angles of somewhat less than 5

A detailed deseription of the preprocessing scheme used to compress the data
set from more than 1500 Mbytes to a workable size has been provided. This scheme
involves two stages, cach consisting of quadrature demodulation, Sitering with a
very narrow FIR low pass filter, and decimation. The sutput time series resulting
from the preprocessing scheme have been demaodulated 1o within 1 mllz of the

nominal signal frequencey, filtered in a bandwidth of 12,5 mllz, and decimated 1o a
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sample period of 1.6 sce. The last filter in the process provides a correlation Tength
of about 20 post-decimated points, leaving approximately 100 degrees of freedom in -

a typical 55 minute signal.

Two examples of the preprocessing output for the vertical array have been
presented and analyzed. Signal to noise ratios of from 15 10 40 dB are typical in
the data set, due to the very narrow filtering of the data. The high SNR leads to
nearly ideal log magnitude and phase traces.  The demonstrated ability to
coherently process the data in the very narrow bandwidth employed without loss of
signal power or phase continuit:\' indicates that no significant variations exist with
time scales of less than about one minute. Short term fluctuations of one minute
order seen in these traces are clearly a function of SNR, indicating that they are
probably noise related. Longer term signal variations with periods of tens of
minutes are observed; their cause is not well understood. Some, although not all,
are likely due to array motion. .\ more impertant canse of these var..ions is
probably changes in source-receiver range over time due to relative drift between
ice ac the two locations. All the observed phase ramps are within the range of

Doppler shifts that reasonable values of source-receiver motion would produce.

The absolute phase alignment down the sensors of the vertical array provide a
great deal of insight into the underlying modal structure.  For the 47 1z data of
Figures 3-9 and 3-10, this phase alignment implies a number of significant mades
probably interfering coherently, since nulls in the vertical structure of the field are
visible. For the 17.75 Hz data of Figure 3-11 and 3-12, however, a single mode, the

first, appears to dominate the vertical structure. A study of the pattern of recvived

amplitudes versus depth for the 17.75 Hz data supports the same conclusion.
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Chapter 4

The Modal Structure of the Arctic
Sound Channel

The purpose of this chapter is 10 characterize the aspects of the eentral Aretic
environment that impact the propagation of sound; to utilize that characterization
to study the modal structure of the channel in which the FRAM IV experiment was
conducted; and to examine the interaction between the modes and the souree and
receiver geometries present during the experiment.  These results are direetly
needed for the work that follows, but also allow some more genoral observations to
be made. Typieally, such a study would be employed only in the interpretation and
modeling phases of an experiment. In the present effort, however, the madal
decomposition techniques to be dé\'eldpéd all réquive both the shapes and the
associated horizoatal phase speeds of the sigaificant modes to be known a priori.
Prediction of the channel's modes thus assumes a more insportant role here, that of

a necessary preliminary to the beamforming implementation,

The requirement for prior knowledge of the local modal structure has
important theaeetical and practieal consequences.  Among the most significant is
that a whole range of modeling and prediction issues now have a direet impact on
the performance of the beamformer. From a theoretical viewpoint, questions of
processing performance become dependent upon the assurptions made about the
environment in which the array is deployed.  More practieal issues inelude the
adequate in silu measurament of the loeal sound speed profile and methods for
estimating other needed environmental parameters. Techniques for computing the

mode shapes and horizontal phase speeds must also be addressed,  Sinee this
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involves solution of the one-dimensional Helmholtz equation {2.7), usually by
numerical or other approximate methods, the applicabilty, stability, and accuracy of
the method chosen must be considered. The question of the channel's gross
temporal stability becomes important since dynamic updates of the modal data may
be necessary. These issuns all affect heamforming performance to the extent that
they generate mismatches between the assumed and aztual modal structures: the
mismatches then skew the results of the modal decomposition in proportion to their

severity.

The starting point for this investigation is a compilation of the environmental
data necessary to dexeribe the acoustic channel. 'The most important clement is a
knowledge of the average water column sound speed profile at the recviver:
additicnal useful information includes descriptions of the bottom and overhead ice
cover as well as an understanding of the spatia! and temporal variations of the
channel profile. The method of mode generation to be employed is then discussed
and the results of its application to the central Arctic sound channel sunmnarized.
Finally, these results are analyzed so that the impact of various environmental

features on the modal structure can be assessed.

Coachman and Aagard [19] provides a good general reference for Aretic
aceanography. Two works by Chen [15), {16] provide more detailed discussions of
Aretic sound speed profiles directly applicable to the data set of interest.  Some
work on the modal structure of the central Arctic has been done previously: for
comparison with the results shown here, the reader may consult Duckworth [29] or
Poleari [67]. No significant variation of results is found among the three. Another
good reference is Kutschale (48], while Mellen {54] and Yang and Giellis {R1] both

provide additional discussion,
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Figure 4-1: Sound Speed Profile of the Water Column
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4.1 A Representative Sound Speed Proflle from the Central Arctic Ocean

Figure -1 indicates the sound speed profile on which the following madia;
caleulations are based. The left hand plot shows the detail of the upper 1000 m,
while the right hand plot shows the complete water column. This profile represents

the best average estimate of sound speed at the FRAM receiver camp during mid-

April, 1082, and is idantical to the profile presented in Poleari [07].

As is found throughout the Aretie, the sound speed is essentially a monoionic
ineressing funetion of depth. Within the uppermost regions (down to abont 150 m),
the controlling mechqnism is not the water temperature, as is tepieally the ease for
most epen acean areas, hut rather the salinity gradient generated by the presence of
the overhead ice canopy {15]. The variation in salinity provides a change of about 5
m/sec in sound speed across the first 100 m. By comparizon, temperatire variations
account for about 1 m/sec of change in this zone. Below the 150 m poir,  the
temperature takes over as the dominant factor, resulting in an alist isovelueity
profile to roughly 700 m. The deep regions {below 800 m) are primarily presure

controlled, as is the case with deep ocean profiles in more temperate climates,

The ret effect of the combination of salinity and tempecature variations is to
produce a very strong surface duct encompassing about the upper 200 m of the
water column,  As will be shown, this surface duet plays a significant role in
determining both the modal structure of the Arctic channel and the nature of the
propagation there.  An average slope of the deeper portion of the central Aretic
prafile (that below 200 m) can be taken as 0.013 (m/see)/m, not far different from
the sound speed pressure dependence of 0.016 {(m/see)/m. By contrast, the mean

eradient in the surface duet is 0.13 (m/sc. fm. abouat ten times larger.

Figure 4-2 details the sound speed profile used 1o mowlel the Aretie hottom,
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The main features here have been chosen based on the compnsite.proﬁle ‘pre-:emed
in Duckworth and Baggeroer [30]. The bottom is modeled as four layers, A 400 m
sediment layer of density 2.2 g/cm3 extends to 4200 m from the assumed bottom
depth of 3800 m, reaching a sound speed of 2.3 km/sec. Two layers are then used
to transition at a depth of 5000 m to a soft basement capable of propagating sound.
The sound speed of this bazement is assumed 10 be 6.0 km/sec, while its density is

assumed to be 2.9 g/em®,
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Figure 4-3: Iistorical Bathymetry along the TRISTEN/FRAM
Propagation Path {taken from [14])
[Note different range and depth seales]
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4.2 Temporal and Spatlal Sound Speed Varlations

The sound speed profile of the central Arctic has been shown to be unusually
stable in both time and space [16). This is due to a number of factors, the most
significant being the geographical nature of the area and the year-ronnd continuous
ice canopy. The isolation of the central Arctic limits variations due to external
influences, while the ice cover insulates the ocean below from the solar and wave
effects found clsewhere. Figure 4-1 can therefore be taken as representative of the
profile that. would be encountered anywhere along the transmission path throughout
the length of the experiment. Some range variation in the sound speed profile ean

he expected due to large scale occanographic features such as eddy systems, thongh,

Although th2 water column is spatially well behaved, the same conclusion
cannot. be drawn of the bottom. Figure 4-3 indicates the bathymetry along the
propagation path, based on charted data (in situ measurements were not available),
The TRISTEN source camp was located almost over top of the Mid-Arctic Ridge.
which is casily identified in the figure from the central trench structue at a range
of 40 km. The series of peaks on either sicle of this trench extend to the 2500 m
depth range.  The severe range dependence of the bottom significantly affects the
nature of the propagation, us has been graphically illustrated by the comparison of
shot data with that taken from earlier experiments [3.  Any made that interacts
significantly with the bottom in the region of the ridge can he expected to be
attenuated to such an extent that its contribution to the total sound field at the

receiver would be small; thus, modes having turning points much below 2000 m are

probably negligible for the TRISTEN/FRAM propagation path.
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4.3 The Acoustic Impact of the Ice Cover .

Much of the Arctic’s uniquencss from an acoustic viewpoint is due to its
relatively continuous year-round ice canopy. Both ice camps were located well
within the zone of continuous ice coverage. At times fespecially in the late
summer), significant regions of open water can occur even in the area nominally
designated as continuously covered. However, thiz effect is not overly significant
during the carly spring. The assumption of continnous iee cover over the full extemt

of the propagation path is therefore reasonable.

The influence of the ice canopy on the propagation path is u significant effeet
which is not yet well understood.  An excellent reference that refleets the eurrent
thousht on the subject is a recent memorandum by DiNapoli and Mellen [25]. The
" primary effeet of the ice cover at low frequencies is to increase the effective
attenuation coefficient by about two orders of magnitude over values found in open
water.  Prediction of such a loss falls into the general eategory of rough surface
seattering. A number of different models of varying complexity may be applicable.
ranging from a simple rough free surface to a full solid layver model, including shear
wave effects. To date, none of the models investigated shows aceeptable agreement
with experimental data, The most important parameters needed to deseribe the ice
canopy are the mean ice draft and the rms roughness, correlation length. and power
spectrum of the random surface that forms the iee-water interface. Typical values
reported by DiNapoli and Mellen for these parameters are a mean diaft of 4 m, with
an rms roughness of 2 m and a correlation length of 44.8 m. These results are in
reasonable agreement with earlier work published by Wadhams [83]. DiNapoli and
Mellen also provide an analytical fit to the experimentally measured ice-water

interface power speetrum. They give the two-dimensional power spectrum as




P(7) = 4z (20/L)° -

(/L) + xR (1)

assuming an isotropic random surface. Here 7 is the two-dimensional wavenumber

vector, ¢ is the rms roughness of the surface, and L is the correlation length,

In this thesis. the ice canopy is modeled by a rough free surface at the iee
water interface, more for simplicity than any other reason, While the roughness has
an important direct effect on modal attenuation, its impact on the gross properties
of the modes (the mode shapes and their horizontal phase speeds) is determined by
its effect on the mean channel profile. Within the limits of the model, the position
of the mean free surface is displaced by the amount of the mean ice draft {4 m).
which is probably insignificant when compared to other sources of depth error in
the profile. lce effects have therefore been ignored in the sound speed profile used

‘o generate the mode parameters,

4.4 Solutions of the Helmholtzs Equation for the Mode Shapes

To convert the environmental information presented above into made shape
and phase speed data, one must solve the one-dimensional Helmholtz equation
cigenvalue problem (2.7) for the specified sound speed profile at each desired
frequency.  The form of equation (2.7) assumes that all iavers, including the
propagating basement, are fluids; shear wave propagation in the bottom is implicitly
ignored. In the sequel, it is shown that neither the mode shapes nor their associated
horizontal phase speeds are significantly influenced by the bottom characteristics.
Thus, the neglection of hottom shear effects is a reasonable approximation. Al
attenuation effeets are also ignored here, as they do not affect the shapes and phase

speeds of the modes to any great extent.
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One method for finding the mode shapes and phase speeds is to employ the
WKB approximation in solving the Helmhollz equation.  This approach is
questionable at the low frequencies of interest here. Another techniques involves the
use of propagator matrices, but this method is more applicable to a dizcretely
layered channel model than it is to the continously varying prefile of Figure 41,
The most accurate method for the present circumstanees is a shooting techiigue,
involving direct numerical integration of equation (2.7).  The integration is
initialized to meet one of the boundary conditions, and the assumed eigenvalue is
varied until the other boundary eondition is met. Layers of varying density ean be
accommadated  through the proper application of  cross-houndary  continnity
conditions (given in Figure 2-1 as the propagating bottom boundary conditions).
The mode’s horizonm.l phase speed is recovered from the eigenvalue, while the
cigenfunction, when properly normalized to meet equation (2.9), vields the muxde

shape.

The main drawback of this approach is the instability of the numerical
integration in the evanescent regions of the mode shape. Since equation (2.7) is
second order, it supports two possible solutions, one exponentially increasing and
the other exponentially decreasing in the direction of integration. Numerical vrrors
that excite the increasing solution can quickly dominate the desired solution, even
though they are insignificant when introduced.  The Arctic profile, with its
monotonic increasing sound speed, is particularly susceptible to this effect. since the

mode shapes in this instance typically exhibit extensive evanescent regions.

To circumvent this problem, a maodified integration method developed by
Baggeroer [4] has been employed in generating the mode shapes presented here,
The Helmholtz equation is first cast into a state variable form of second order.

Treating the state variables as a rectangular Cartesian pair. the problem is then
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transformed to a magnitude/phase pair of equivalent polar coordinate variables,
The differential equation for the magnitude variable decouples from the equation for
the phase variable and the boundary conditions take on rather simple forms. so that
only the first order dilierential equation (or the phase need be solved via shooting to
obtain the eigenvalue. Then, given the phase solution. the mode shape is recovered
by integrating for the magnitude and converting ba: X te: the originai variables. ‘The
development by Baggeroer includes a series of conciusions about the proper
directions of integration for nunierical stability, This appruach has 2l bees

successfully employed by Duckworth [29).

To ensure the greatest possible accuracy, the Baggeroer approach has been
implemented here with a series of fourth order Adams-Bashfoith predictor-corrector
integrators (12, A depth grid of 5000 points is employed for the integrations,
providing a sample interval of 1.2 m. The resulting mode shapes have been
normalized for the pressure field (rather than the veloeity potential field) in
accordance with equation (2.9). As a test of the internal consistency of the
algorithm, the orthogonality integral of equation (2.8) has been computed for
different mode pair combinations at several frequencies of interest.  Typieal
integration results are of the order of 107, with the worst errors generally oceurring
either when the pair consists of neighboring modes or when the first mode is one of
the pair. However, even in these conditions results as large as 10 are obtained

only rarely.
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Figure 4-4: Shape of the First Mode at Various Frequencies

4.5 An Analysis of the FRAM IV Modal Structure

All modes with turning points above the nominal bottom depth of 3200 m

have been computed at the frequencies available in the vertical array data set (the

nominal sound speed at 3800 m is 1508 m/sec). Table -1 indicates the number of

modes found at each frequency, as well as the number with turning points above

2500 m: as discussed above, the modes contributing significantly to the sound field

at the receiver are all probably included in this last group. Figures 4= through -7

display the shapes of the first four modes at some of the frequencies for which data

is available. The frequencies chosen for display were seleeted so as to span thowe
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Figure 4-6: Shape of the Second Mode at Various Frequencies

frequencies of interest that are not shown,

4.6.1 Mode Shape Analysis

The extent of a particular mode is inversely related to frequency. Higher
order modes look similar to the fourth, but extend further into the water column
with a greater number of sign changes. Their general shape is not far different from
that of Airy functions. In all cases. the absolute maximum of the mode shape

oceurs in the half cyele immediately above the mode turning point.

As both the source and the herizontal receiving array were deploved to a

depth of 95 m. the values of the various mode shapes there are of particular
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Figure 4-8: Shape of the Third Mode at Various Frequencies

interest. Figure -4-8 indicates the levels of the mode shapes in 3 at 91 m for the
first 10 modes at 15, 30. 47, and 71 Hz. As indicated in Chapter 2, it is these levels
which control the distribution of source energy in the various modes. Figure -8
shows that, at its 91 m deployment depth, the TRISTEN source drives the the first
mode much better than any other mode. The higher order modes, while excited less
efficiently than the first, are all driven about equally: moreover, the level of this
platean appears to be insensitive to frequeney. The 47 Hz curve is something of an
anomaly, in that at this frequency modes 2 through 6 all exhibit nulls very close 1o
the source depth (see Figures -4 through 4-7): this accounts for the unusually low

levels of modes 2,3 and 1. However, the higher order modes at 47 Hz sl appear
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Figure 4-7: Shape of the Fourth Mode at Varions Frequencies

to plateau at about the same levels as those of other frequencies.

Figure 4-8 may also be interpreted in a different context,  Because the
horizontal array at the FRAM receiving camp was deployed to the same 91 m depth
as the scurce, the discussion above applies equally well 10 the relative sensitivity of

the horizontal array elements to energy carried by the various modes,

From Figure -8, it can be seen that the advantage in excitation that the fira
mode possesses over higher modes is a function of frequency, While this difference
is quite large in the two middle frequencies, it is much staller at the edges of the
frequencey band of interest.  To highlight this offect, Figure 4-9 has been included.

This figure displays the relative advantage of the first made over its neighboring
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Erequency m_m Mm

lS 00 H:

7.5 H: la 9
‘.’0.00 Hr 19 10
23.50 Hz n 13
30.00 13z b2 15
35.25 Ha 33 17
35.50 Ha 34 18
47.00 Ha 43 23
53.25 Hz 51 P
55.00 Hz 53 2R
71.00 H: 6! 3H

Table 4-I: Number of Modes with Turning Points abave
3300 m and 2500 m

modes as a function of frequency. The relative advantage formula given in the
figure is a erude method of quantifying how much the first mode extends above
neighboring mode shape levels in Figure 4-8. Note lbe'smmg 30 dB} peak at abow
45 Hz in Figure 4-9. About 10 dB of the plotted value near the peak is due to the
uncharaeteristiely low levels of modes 2 through 5 (the modes used in the average
indicated in the figure): however. a reduction of the central peak by even 10 o3
does not change the fundamental nature of the plot. The explanation of the eoll off
at the extremes of the frequency range is straightforward. At the lower frequenci,
it is the mode shape level for the first mode that is decreasing, rather than those of
nigher modes increasing. At the high frequency end of the speetrum (above 70 Hz),
the mode shape levels for modes 2 and 3 finally begin to approach that of the first
mode, again causing a decrease in the first mode relative advantage. Both of tese

effects can also be seen in Figure -,

Two important conclusions must be drawn from Fignres 4-X and -0, First,
the deployment of the TRISTEN source heavily favored first mode exeitation, by as

much as 15 dB or more in the middle frequencies of the range. 1t is not antil 74 1z,
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Four Modes at 91 m versus Frequeney

the highest frequency available in the vertical array data set, that the second apd
third modes begin to reach excitation levels equivalent with that of the first mode,
Second, and equally important, because the horizontal array at FRAM was deployed
to the same depth as the source, it was also heavily biased towards the first mode,
so much so that data taken from the horizontal array hydrophones must he
considered to be almost completely dominated by first mode characteristies,  While

this effect was anticipated. its magnitude is rather surprising, expecially for sound

propagation from the TRISTEN source to the horizontal array, where it comes into
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play at botl: the source and receiver.

4.5.2 Phase Speed Analysis

While an analysis of the mode shapes provides information about relative
levels to which the source excites the various modes, an analysis-of the horizontal
phase speeds provides much more ingight into the effects of the varions parts of the
sound speed profile on the modal structure. This is because the phase speeds are
much more wensitive to variations in the profile than the made shapes. Figure 4-10
provides plots of the phase speeds for the fiest three modes of the central Aretic
channel in the 0 to 80 Hz frequeney range. In general, these plots eonsist of three
regions: a high frequency region, where the modex are effectively trapped in the
surface duct; a transition region; and a low [requency region wlwre'llw modal
chamclerislics: are dominate} by the deeper portions of the profile. To emphasize
this effect, modal phase speed resnlts obtained from the two sound speed profiles of
Figure 4-11 are also plotied. In the-left hand profile, the effect of the surface duet
has been eliminated by extending the profile from the 200 m point to the surface at
the gradient existing just below that point. In the right hand profile. the surface
duet has been retained and extended all the way (¢ the bottom of the water column
in a similar fashion. The gredient used here o extend the profile is the slops

existing just avove the 200 m point.

Given the results of the previous section that indicate the dominant role it
plays in the transmission of sound from the TRISTEN source, a study of the first
mode is of special interest here. As can be seen in Figure i-10. below 10 1z the
effect of the surface duct on first mode propagation is small. From 10 10 30 Hz, the

maode is in transition into the surface duet, while above 30 Hz it ean be considered

to be trapped in the surface duct.  As the mode falls into the surface duet, a
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significant reduction of phase speed (from about 1460 m/sec to about 1450 m/see) is
evident. Examination of the mode shape as a function of frequency (Figure --4)
supports this conclusion. By comparison, the second mode does not begin its
transition until about 35 Hz and is not completely trapped in the surface duct until
a frequency of almost 60 Hz is reached. The center of the third mode transition
region is about 85 Hz, but it does not become completely trapped until well above
R0 [1z. As the various modes fall into the surface duct, the spread in horizontal

phase speed from those not yet trapped becomes much more pronounced.

Phase speed variations have also been used to investigate the sensitivity of the
results to the bottom characteristics. To accomplish this, the propagating bottom of
.Figure -2 is replaced by a hard bottom and the modes recomputed at 23,5, 35,25,
and 47 Hlz. Measurable differences between the resultant phase speeds and those
computed earlier are first detected at modes 19, 30, and i1, respectively. All the
modes exhibiting sensitivity to the bottom structure . have corresponding horizontal
phase speeds in excess of 1500 m/sec, or, equivalently, possess turning points within
500 m of the bottom. Thus, they are excluded from the set of modes thonught to
most significantly contribute to propagation in the channel (those with turning

-
bt

points above 2500m).

4.5.3 General Observations

Comparing the data from Figure 4-9 with that of Fizure 4-10, one observes
that the frequencey region in which the first mode is most dominant (between about
20 and 60 Hz) coincides with it being the only mode trapped in the surface duet, It
can then be coneluded that any source or receiver deployed in the duet is very well
tuned to the modes trapped there, but only poorly matehed to those that extend

outside it. In such a ease, the environmental effeets that most greatly affeet the
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sound propagation are those that are located at the top of the water column. This
is why parameters such as basement characteristics and bottom topography have

relatively little impact on ‘e problem at hand.

In the upper layer of the Arctic, the only two significant environmental
considerations are the ice cover and range variations in the sound speed profile.
The former is known to have a pronounced impact on the sound propagation, as
mentioned earlier. At the low frequencies of interest here, the effect of the latter is
probably small by comparison for a number of reasons.  Surface duet range
variations influence propagation in the duct in three ways. First, they provide
density and refractive index contrasts that seatter the incident sound cenergy,
effectively increasing the atienuation.  However, this effect is negligible when
comp:\.red to the scattering caused by the ice, which provides a much better acoustic
contrast. Second, they affect the way that the souree and receiver couple into the
channel by altering the shape of the modes that are trapped in the duct. Finally,
they affect the distribution of modal energy by generating maede coupling. A\ review
of the coupling coefficients (equations (2.1R8) and (2.19)). though. reveals that their
size is primarily a function of the net change encountered in the mode shapes,
Thus, both of these last two effects are controlled by the amount of mode shape
variation that can be generated. I general, it ean he said that the shapes of the
lowest order modes (the ones which the source primarily excites) are very insensitive
to small variations in the sound speed profile.  These mode shapes tend to be more
dependent on the larger seale trends in the profile than on its details. A chauge of
as much as several meters per second in sound speed at any point in the duet can
therefore be expected to have only a very small affeet on the mode shape,
Similagly, variations in duet depth of as mueh as 20 or 30 m are not overly

significant, Since variations in sound speed much beyond these values are unlikely,
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it is hard to argue that range variavions in the sound speed profile have an

important influence on low frequency Arctic surface duet propagation.

The above conclusions are very dependent on the location of the source in
depth. If the source is positioned below the surface duct, a much different situation
is encountered. Under these conditions, a large spectrum of higher order modes are
excited at the expense of the modes trapped in the surface duet.  The bottom
characteristics can then be expected to play a much more important role in
controlling the overall propagation picture.

TRISTEN

] I L CF K R T

1000

I
©
[+
L]

OEPTH (M)
Vo vy s vy v s f v s ysarasalasanzay

~ * 7
13.8°,’ 1486.8 m 'sec

3000 _‘/

2.8 2 3 8 % 3

LBLIR S NLEE BE ST I SRR Gt BRI LA SLARAAC T M S N S N B SN N M L S O S MR MR BN I R N S SR O R St B Mt Bt Ot SRL MR ML B |

Q 49 80 120 160 200 2490
RANGE (M)

Figure 4-12: Deepest RSR Ray for the TRISTEN/FRAM Transmission Path
[Noie different range and depth seales))




-113-
4.6 The Deepest RSR Ray Paths of the TRISTEN/FRAM Channel

As concluded in Polcari [67], it is at times easier to characterize the
propagation in terms of a ray representation than it is to describe them in terms of
modes. This is especially true of the deepest diving RSR rays, which correspond to
coherent sums of large numbers of higher order modes. all of which are closely
spaced in horizontal phase speed. Figure 4-12 is adapted from [67] to provide a
general feel for the characteristies of the deepest RSR ray paths for the
TRISTEN/FRAM transmission path. These rays are seen to exhibit horizontal

phase speeds in the 1480 to 1495 m/see range.

4.7 Summary

The environmental aspects of the central Aretic sound channel and their effect
on the modal structure encountered during the FRAM IV Experiment have been
investigated. The water rolumn sound speed profile is presented in Figure -1, and
can be assumed to be reasonably stable over both time and space. The bottom
topography creates major deterministic range dependence in the channel,  The
overhead ice canopy most greatly effects the attenuation of modal envrgy. but has
little influence on the gross aspeets of modal structure, the mode shapes and their
horizontal phase speeds. The exact mechanism for the attenuation increase is not

well understood.

The sound speed profile consists of three parts: a strong surface duet
extending to about 200 m. which is unique in that it is generated by variations in
salinity rather than temperature: a monotonic incereasing gradient below the surface
duct that extends to the bottom at 3200 m, and which is generally pressure

controlled: and a basement for which some experimental data on the geophysieal
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structure is available, The profile is typical of that generally encountered in the
basins of the eastern region of the central Arctic. Such a profile sericusly increases
the possibility of stability problems when solving the Helmholtz equation
numerically in order to obtain the mode shapes; special efforts have been made here

to avoid this problem.

An examination of the mode shapes reveals that. beeause of the source and
receiver geometries involved, first mode propagation plays a dominant role in the
FRAM IV data set. It is exhibited in the relative excitation levels of the varions
modes by the TRISTEN source, where the first mode is often driven at levels more
than 15 dB above those of other modes.  Also, the sensitivity of the horizontal
receiving array to energy propagated in the first mode exceeds its sensitivity to
other modes by equal amounts. In general, the relative mode shape levels for higher
order modes appear to reach a plateau whose level is not very sensitive to the

frequency being considered. The shapes themselves are similar to Airy functions,

By studying variations in the associated madal horizontal phase spewds as o
function of frequency. the effect of the various parts of the central Aretic sound
speed profile on the modal structure has been deduced. Each mode can be seen 10
transition from the deeper part of the profile to the surface duct with increasing
frequency; for the first mode, this transition starts at roughly 10 1z and is
completed by about 30 Hz. The dominance of the first mode is intimately linked to
this process. The bottom characteristics do not appear to influence the modes
thought to contribute most heavily to sound propagation through the channel,
Finally, the deepest propagating RSR ray paths ocenr at horizontal phase speeds in
the LIRS0 to 1195 m/see range: these represent coherent sums of large numbers of

higher order modes closely spaced in phase speed.

In general, sensors deployed in the Aretie surface duet couple very well to
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those modes that are trapped in the duct, and only poorly to any mode extending
bevond it. This makes environmental effects that exist in the uppermost layer of
the Arctic much more significant. than ecffects located at other depths for any
situation involving surface duct propagation. For this case, the impact of variations
in the sound speed profile appear to be small compared to that of the ice canopy.
since the mode shapes of importance are relatively insensitive to small changes in
the profile.  Sources deployed below the duet can be expected to exhibit

significantly different propagation regimes.
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Chapter 5

Modal Beamforming:
Theory and Simulation

In the three previous chapters, the preliminaries necessary for *modal
beamforming® have been reviewed. The source model has been disenssed: the
available recciving arrays have been studied in detail: and the modal structure of
the sound channel has been carefully analyzed. This chapter draws upon clements
of all of the three previous chapters to study the varions mathematical algorithms
that might be employed in the modal decomposition of a narrowband sound ficld at
a recciving array. Such decompositions are cloze analogs of the methods used in
traditional plane wave beamforming; from a theoretical viewpoint. the fundamental
difference is the choice of the basis set on which the observed sound field is
decomposed. To emphasize the similarity, the term *modal beamforming® is used

here to refer to the modal decomposition process.

In plane wave beamforming, one attempts to measure the spatial strueture of
a narrowband signal fiekl by estimating its three-dimensional spatial Fourier
transform, or wavenumber speetrum.  In maodal beamforming. the estimate is of a
transform that is only partially Fourier in nature; a modal transform is instead used
in the vertical dimension. From a practical viewpoint. each of thess choices
possesses  distinet  advantages and  disadvantages.  The pure  plane  wave
representation is very simple, yet very general, requiring only limited w priori
knowledge of the characteristies of the propagation channel. “This makes it a2 very
robust, chanuel-independent  procedure.  Additionally.  the extensive bady  of

experience from other disciplines on the use (and misuse} of the Fourier transform is
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directly applicable in the stufl,v of perforriance issues. Finally, the existence of
efficient computational algorithms for evaluation of the transform {i.e., the FFT),

cnhance the desirability of such an approach.

Unlike Fourier decomposition, modal beamforming requires intimate prior
knowledge of the propagation channel, so that the modal structure needed (o
implement the algorithms can be determined. In many respectz, it may be thought
of as a beamforming approach that is tuned to the propagation channel in which it
is implemented. As discussed in Chapter 6, modal beamforming is also less lorgiving
of errors in sensor position, particularly when these errors are generated by tilt in a
vertical array. The added sensitivity and decreased robustiess of a modal approach
are balanced by a number of benefits, however. The most important of these is the
very efficient representation of the received signal field provided by the modal
decomposition.  This efficicncy has both mathematical and physieal aspects.
Mathematically speaking, the modal representation provides a countably infinite
basis set as opposed to the infinitely dense set of plane waves: further. this modal
basis set can often be limited to a small number of significantls contributing modes
with relatively simple arguments (such as those presented in Chapter 2). From a
physical viewpoint, the modal approach is in some sense the natural decomposition
to employ, beeause it represents a direet eigenfunction representation of the sound

field.

The chapter starts with the derivation of modal beamformers in a general

. . . . N H
sense from the principles of least squares estimation theory. The maodal equivalents
of two popular plane wave beamforming techniques are developed: spatial matehed
filtering: and maximum liklihood (MLM) aleorithm. Each of these methods ean he
implemented in vither a single beam or a multiple beam variant, providing a total of

four different approachs. A comparison of the four is made to highlight thejr
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theoretical differences. Two issues then remain. The first i3 the question of relative
performance, which, because of its complexity, is studied in some detail. The other,
which is closely related, involves ihe proper selection of a modal source model,
Both of these issues are investigated using simulated data in addition to theoretical

results.

The theoretical developments presented here are covered in the literature n
varying degrees. The fundamental techniques of least squares estimation theory
have a rich history, and any number of good standard references are available: one
siuch example is Lawson and Hanson [49]. References which deal with direct mexdal
amplitude estimation techniques are limited. Hinieh [12] first proposed the maltiple
beam MLM algorithm derived here, but did not applied it to aciual data,  Shang.
Clay, and Wang [75] develop the multiple beam least squares algorithm and apply it
to data generated in a laboratory setting.  Signal processing aspeets of the algorithm
(particularly performance issues) are not discussed, however, While Ferris [35] uses
a single beam least squares algorithm o make modal amplitude estimates from field
data, his experiment is purposely structured to avoid the fall modal decomposition
issue, A\ similar approach is taken true of the tow tank experiment of Hobaek,

Tindle, and Muir [41].

More research has been completed in two related areas, One of these areas is
the study of the plane wave equivalents to the algorithins investigated here,
Baggeroer [2] provides a comprehensive reference on plane wave beamforming,
including the MLM approach, which was originally introduced in the classic paper
by Capon [10.  Cox [21] analyzes the performance of MLM plane  wave
beamformers in detail.  Schweppe [74] studies the coneept of multiple beam loast
squares beamforming.  Finally, a recent paper by Hayes, Ripa. and Mangoum

[38] provides further insight into the relationship between the least squares and
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MLM approaches.

Related work, much of it recent, can also be found in the area that has come
to be known as *matched ficld processing®. The techniques of interest in this field
are not directly involved with modal decomposition; rather. they use prior
predictions of the total signal field to generate direct extimates of sowree
parameters, such as range and depth. However, their performance is fundamentally
linked to the modal characteristics of the zound channel in which they are
employed, making them of much interest in the present effort.  Clay (1) first
proposed the use of matched field processing: this work alse forms the hasix for
Chapter 7 of Talstoy and Clay [79] and Appendix A5 of Clay and Medwin (18], Ina
more recent paper, Bucker (9] proposes a similar but more robust scheme,  Hinich
develops an MLM algorithm for source depth estimation [12] and studies the
problem of the optimal array locations for making such estimates [43].  Heitmoyer,
Moseley, and Fizell [30] have completed detailed simulations of matehed field
processing in a Pekeris waveguide, while Porter, Dicus, and Fizell [70] have done
similar work for a deep Pacific channel.  Fizell and Wales [39] have had some
preliminary suceess applying the technigue fo actual field data from the \retie
Ocean.  Finally, Shang, Clay, and Wang [75] have proposed a related  (bw

som. ¢ more simplistic) approach for passive source ranging.

5.1 Development of the Least Squares Modal Beamformer

The theoretical development of the least squares modal beamformer s
straightforward,  Let the N X 1 complex veetor P denote the complex amplitude
observed at each of the N sensors in the array after completion of the twe steps of
quadrature demodulation and filtering deseribed in Seetion 3,11, For the moment,

assume that P s a coastaut: the ease of temporally varving compley amplitudes is
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taken up in the sequel. With the exception of the assumption of time invariance, P
is then identical to p(f) in equation (1.5). Because P is a complex vector, its

clements include information about both the magnitude and phase of the signal.

'The least squares beamformer computes the set of complex modal amplitndes
which minimizes the total square error between the received pressure field and the
modal source description developed in Chapter 2. This error may be quantified by

defining an error vector

e=P-EA. (5.1)

The second term in this equation represents the assumed source model sumnvarized
in equations (2.33) through (2.36). A is an M X 1 time invariant comples column
vector representing the resulting magnitude and phase estimates for the amplitude
‘ of the M modes that are being modeled. Note that the ch;)iw of M is a mudeling
issue of some complexity whose resolution is left to the user.  The resultant
pecformance of the processing is quite sensitive to the proper seleetion of this
parameter, as investigated in Section 5.10. The N X M steering matrix E is  the

same as that deseribed in equation (1.4).
The least squares requirement is that the real sealar

Q

te (5.2)

A-A*E*P+A*E?

I
Io
fte

*P-pP* A

ol

be minimized over all possible choices of the A veetor, The minimization is easily
perfurmed by variational ealeulus.  Setting the first variation of equation (5.2) 1o

zero, one ohtains
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0Q =0 (5.3)

= (A*E*E-P*E)oA +0A* (B*EA-E'P).
which requires that

EtEA=E*'P. (3.4)

Assuming the M X M matris EYE to be non-singular, equation (5.4) may be

solved directly to find the least squares modal estimator

A=(E*E)]'E*P. (5.5)

Such an assumption requires that M not be larger than N, This requirement may
be circumvented by identifying the linear transformation in equation (5.5) as the
standard matrix pseudo-inverse; the techniques for extending this cperator to the
case where M is larger than .\ are quite standard [49).  Such an approach hax a
number of drawbacks, though: the most important. being that the resulting modal
amplitude estimates are no longer linearly independent,  Therefore, it is not
considered here.  From a practical standpoint, the assumption of non-singulazity
also raises the issue of the numerical precision needed to acenrately compute the
inverse, a question intimately linked 1o the proper seleetion of M.

An investigation of the second variation demonstrates tha he solution resnlis

in a minimum total square error if the EY E matrix is positive definite (which it

must be if it is non-singular),

#°Q =20A*E*E0A > 0. (5.6)

The residual total square error for the beamformer can be obtained by substituting

cquation (5.5) baek into equation (5.2) and simplifving, which results in




Based on equation (1.8), an cstimate of the M X M modal cross-coherence

matrix may be computed as

5,\. =E[AAY] (5.8)

= (E*E)"'E*SyE(E*E)”
where

S, =FE[PPY] (5.)

is the more traditional N X N sensor cross-coherence matriy.

If the vector P is actually time invariant, then the modal cross-coherence
estimator is redundant, since it provides no more information than the amplitude
estimate given in equation (5.5). On a practical basis. though, this vector flueinates
randomly over time. The application of equation (5.5) to such a problem ean be
justified only on an instantancous basis. One can envision using a time slice of data
to form P, which is then transformed into the complex modal amplitude estimates
for that instant of time. Under such conditions, equation (5.5) provides only an
estimate of the random complex amplitude time series of each mode. since it
includes no averaging. By contrast, equation (3.8) vields information that is both
more useful and more stable, since it instead estimates the second order spatial
statisties of the veetor random process. Since the expected value operator is alimost
always implemented by temporal averaging rather than ensemble averaging, the
madal cross-coherence estimator may be thought of as averaging a number of

estimates of the matrix A A*. where A is determined on an instantaneous basis
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from equation (5.5). Alternatively, one can view the averaging taking place in the
computation of the sensor cross-coherence matrix, with equation (5.8) providing the
transformation to the equivalent modal cross-coherence matrix. The two views are

identical because the processor is linear.

8.2 Single Beam versus Multiple Beam Beamformers

As developed, equations (5.5), (5.7), and (5.8) define the multiple beam least
squares modal beamformer. This beamformer is exactly analogous to Schweppe's
multiple beam decoupled processor [74] for plane wave beamforming. with the sole
exception that the construction of steering matrix E is different. While it is possible
to implement multiple beam beamformers directly, a dilferent approach is more
commonly used, especially in azinwuthal plane wave beamforming. A single plane
wave source model is chosen, so that M = 1. The resulting algorithm is then
evaluated repeatedly for various steering vectors, each of which corresponds to a
plane wave propagating in a different direction. One can develop an equivalent
approach for modal beamforming by again selecting M to be 1, and then making
successive independent estimates by indexing the steering veetor over the mode set
of interest. This implementation is called the single beam least squares beamformer

in this thesis.

Such an approach has several advantages. Most importantly, it eliminates the
need for the user to select a value for M 4 priori. The resulting processor is simple
and intuitive, forming the modal equivalent of a conventional beamformer,
Alternatively, it may be considered to be a spatial implementation of the matehed
filter concept.  Finally, the requirement that M be less than N is relaxed, so that

one is not constrained in the number of dilferent modes that ean be estimated.

As long as the mode set of interest is smaller than the number of sensors
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available in the array, the processing can be implemented by either approach.
Therefore, it is important to understand the relationship of the two methods. This
can be readily demonstrated with a simple example. Consider a signal Which
consists only of a single mode, with no background noise. Let the steering vector
associated with the mode forming the signal be denoted by E , and let a, be the

P
mode's complex amplitude. In this situation, the sensor cross-coherence matrix is

Sy=le,’E,E;. (5.10)

Assume that the single beam least squares beamformer is steered to o mexde
different than the one present in the signal. Let the steering veetor associated with
this mode be E,. From cquation (5.8), the resulting single beam least squares
estimate for the squared magnitude of this mode is easily found to he

+g |2
la,* = l«,l"@ﬁfl-- - (501
=p
Note that when the beamformer is steered to the mode actually presemt in the
signal, the estimate in equation (5.11) is exact.  When steered to any other mode,
though, what is generally a small amount of energy (bat need not necessarily be) is
allowed to leak through, contaminating the estimate to a greater or lesser degree,
Such behavior is equivalent to the sidelobe patterns developed in plane wave

heamforming.

Now consider a multiple beam least squares beamformer with M =2, Let
one of the two modes included in the beamformer be the made actually present in
the signal: let the other be the same mode to which the single beam beamformer is
steered. The steering matrix for the multiple beam algorithm is then

E=|[E,IE,]. (5.12)
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While algebraicly tedious, it is not difficult to directly evaluate equation (5.8) for
the sensor cross-coherence matrix of equation (5.10) and the steering matrix given in
equation {5.12). An estimate equivalent to that of equation (5.11) may be extracted

-
from the lower right hand corner element of 8,,. When this is done, it is found that

o) =o. (5.13)

The relationship between the single beam and multiple beam least squares
beamformers is now evident. The single beam algorithm allows energy from one
made to leak into the estimates of other modes, while the multiple benm algorithin
does not allow such leakage between modes that are ineluded in the beamformer.
The effect of the multiple beam approach is best dcscrilu;d by saving that the
effective beam pattern for each mode to be estimated is forced to have a null in the
direction of each of the other modes also included in the beamformer. ‘This
climination of cross-talk and sidelobe leakage between the various modal estimates
represents the fundamental advantage of multiple beam algorithms over their single

beam equivalents.

5.3 Generalizations of the Least Squares Modal Beamformer and the
MLM Modal Beamformer

The results of Section 5.1 can be generalized through the introduction of a
weighting matrix _W_ in the error calculation of equation (5.2). E 5.V XN and s
assumed to be Hermetian and positive definite. It controls the relative importance
of the various terms that contribute to the error expression. ‘The generalized form

of equation (5.2) is




-126-

O
i
l0+
<

(5.14)

EA-A*E'

1€l
1€l

P+ATE*WEA.

I
g

+
1€
e
"‘3,
1€

for which the minimum total square error is generated by

=(E*WE)'E* WP. (5.15)

The residual error result equivalent to equation (5.7) is

Qi =P ' (W-WE([E*WE)'E*W|P. (5.16)

and the modal cross-coherence mnlrix estimator becomes

Sy =(E*WEE'S,E(E*

il
ol
£l
ol

)L, (5.17)

N

The choice of W is somewhat arbitrary. The results reduce to those of the
least squares beamformer if W is chosen to be an .V X .\ identity matrix. Other
choices are possible; the discussion here is limited to the selection often made in

high resolution beamforming

w=5s3. (5.1R)

The motivation behind choosing the inverse of the sensor cross-coherence
matrix to be the weighting matrix is quite simple, but the implementation of such a
choice is rather c(.)mple.\'. In theory, one desires to weight observations made on
sensors having low noise more heavily than those encountering high noise levels,
Obviously, if the noise is uncorrelated between sensors and has the same power

(variance) at all the hydrophones. then seleeting W to be the identity  matriv s
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reasonable. For spatially uncorrelated noise that is of varying intensity at different
sensors, it is appropriate to choose _-W: as a diagonal matrix with each non-zero
clement being proportional to the inverse of the noise power seen at the respective
sensor. Such a selection most certainly weights the sensors receiving low noise levels

more heavily than those receiving high noise levels.

For spatially coherent noise, the coneept is naturally extended by identifving
the weighting matrix with the inverse of the full sensor eross-coherence matrix in o
condition where no signal is present, so that only noise statisties are measured.
Finally, it is shown in Appendix A that the results of equations (5.15) and {3.17) are
invariant to the inclusion of signal components in the weighting matrix, so that the
full sensor cross-coherence matrix may be used in place of just its noise portion,
This invarianee is very important, since it allows in situ adaptive estimates of the
weighting matrix to be made without requiring prior removal of the signal from the
noise. To be valid, it does require the assumption of statistical independence
between signal and noise, though, which then leads to the issue of coheremt

interference. This very significant problem is addressed at length in the sequel.
The choice of W indicated in equation {5.18) allows equations {3.15) and {5.17)
to be recast in more recognizable forms,  After simplification, one obtains
A=(E*S{E|"'E*S'P. (5.19)
and
S Et sl E)!
§_\1 =(E .S.N §) . (1.20)

These results are the modal analog of what is known as the MLM algorithm: the

name minimum energy method is also commonly used. Equations (5.19) and (3.20
! : |

may be derived in a number of different ways. each of which provides insight into
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the properties of the solution. The name *MLM algorithm® comes from the fust
that the solution is the maximum liklihood estimator for a known signal in 2.
nican, spatially coherent Gaussian noise. It can also be shown that the soluricu
provides the maximum SNR processor for a signal in statistically independert

coher i nose.

The MIM algorithm just derived represents the modal analog of the full
mukipic beam MLM bea. former. It agrees with the result of Hinich [42]. who
approached the problem from the perspective of a maximum liklihood estimator for
a signal in Gaussian noise. The algorithm ean also be implemented as an analog of
the single beam least squares approach, where Mois chosen as 1 and the resulting
processor is repeatedly evaluated by indexing the steering vector E over the mode
set of interest.  The relationship between the single beam and multiple beam
variants of the MLM algorithm is identical to that of the two least squares
approaches, in that the effective beam pattern for each mode included in the
multiple beam algorithm is forced to have nulls in the direction of all the other
modes also included: such nulls are not generated in ihe single beam MLM
alzorithm.  This null generation has some interesting consequences for MLM

algorithm performance. These effects are discussed later in the chapter.

5.4 A Comparison of Modal Beamforming with Plane Wave

Beamforming

As is apparent from the previous discussion, the most significant difference
hetween a modal beamforming implementation and more traditional plane wave
methods is in the construetion of the steering matrix E Il one considers the single
beam case for simplicity. the steering vector required for the detection of a plane

wave traveling with wavenumber vector ¥ is




E= * , (5.21)

- e_j R"N L

where 7. is the three-dimensional position vector of the i™ sensor with respecet 1o
the receiver reference point. For the plane wave case, ¥ has a magnitude equal to
the wavenumber, and a direction that is parallel to the direction of propagation. It
also i3 three-dimensional, so that it may include a component in =, Beeanse a plane
wave is homogencous in amplitude across any phase front. the terms of the steering
veetor all have nnit magnitude. The phase of cach 1erm indieates the compensation
necessary to correct for the phase accumulation of the wave in its travel from the

recciver reference point to the sensor.

By contrast, the steering vector deseribing the m'™® mode is

E= ' (5.22

-J ;m'r.\' ]

S dm(:x\’) ¢

where 6, () denotes the shape of the mode, and %, i3 the horizonlul wavenumber
vector associated with the mode. & = has a length equal to the made’s horizontal
wavenumber and a direction parallel to the horizontal direction of propagation. In
contrast to the plane wave case, both the wavenumber vector &, and the position
vectors 7, are now restricted to just the two horizontal dimensions.  Also, the modai
steering vector elements are non-uniformly weighted by the size of the mode shape
at each sensor’s depth.  These two differences are indicative of the fact that the

transform used in the = direetion is modal rather than Fourier.

It is of interest to specialize these results to the ease of a horizontal areny. For
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such a situation, the depths of all the sensors can be assumed equal. This niakes all
the ¢ (=;) in the modal steering vector identical. For the plane wave steering
vector, it also ensures that the phase contribution of the = component of the
wavenumber vector is constant across all the array elements. For a horizontal
array, therefore, each modal steering vector can be considered to be related to an
equivalent plane wave steering vector. The only differences between these two
steering veetors are a scalar phase factor and a sealar magnitude factor. One can
easiiy compensate for the effect of the magnitude sealar, sinee it is equal to the size
of the mode shape at the horizontal array deployment depth, while the phase sealar
has no effect on the modal cross-coherence estimate, which provides only relative
phase information. Thus, for a horizontal array, plane wave beamforming in the
vertical direction provides information which is equivalent to the modai amplitude
estimates of dircet modal beamformers. This observation becomes jmportant in
Chapter 7, where data from the horizontal array (which is processed with plane
wave beamformers) is compared with direct modal heamforming results from the

vertical array.

5.6 Estimation of the Sensor Cross Coherence Matrix

The beamformers used for the generation of the data presented in this thesis
are fashioned around cstimates of the modal cross-coherence matrix (equations (5.8)
and (5.20)) eather than the estimates of the direet complex modal amplitudes
(equations (5.5) and (5.19)). There are several reasons for selecting this approach.
As discussed in Seetion 4.1, the cross-coherence matrix is related to the fundamental
statisties  of the  random amplitude  processes,  whereas  direet  amplitude
measurements provide data only about a single realization of these processes. Thus,

the former ean be considered to be somewhat more stable than the latter,
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Additionally, the cross-coherence matrix estimator is slightly more efficient
computationally, because its implicit averaging reduces the number of data points
that must be processed through the beamformer. Finally, the matrix estimate
provides direct measurements of the coherence for the various modes in its off-
diagonal terms. The only information lost in this approach is the absolute phase of

the received signal, which is of no interest here.

As written, equations (5.8) and (5.20) depend upon the sensor cross-coherence
matrix 5.\" which is an unknown statistic of the random propagation problem. In
practice, E\ is first estimated over a finite window of data, and then this estimate is
substitnted into the equations in place of the true sensor cross-eolierence matris.
Typieally, 5.\‘ would be computed by integrating over the band of frequencies
containing the signal.  For diserete time signals that have been complex

demodulated, the caleulation may be written as [10]

B
Svir= Z .\'l-(m) .\':,(m). (5.23)

mm—f3

where 203 4+ 1 is the bandwidth of the signal and Nim) is the FFT of r{n). the

complex preprocessed time series received at the i'" sensor,

A somewhat simpler procedure may be used in the present situation,  Beeanse
of its narrowband nature, the signal may be assumed to reside in only a single
frequency bin, The preprocessed time series from each sensor may then be viewed
as suceessive estimates of that bin's complex amplitude, since the digital filtering
employed is very narrow and cuts off quite sharply. For these conditions, a natural
estimate of the sensor cross-coherence matrix is the direet time average

lo
o~

| .
Seu = I Z .ri(n) rdn). (5.21)

n=()
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This method has the advantage of not requiring FFT computations in the
extimation procedure. The two approaches are easily shown to be equivalent. If the
sum in equation (5.23) is extended to cover all frequency binz generated by the FFT,
then the results of equations (5.23) and (5.24) must be equal by Parseval’s relation.
Since the narrowband nature of the preprocessing ensurex that any energy
remaining in frequency bins outside of the 125 mHz analysis bandwidth is

negligible, the resulting estimates must then be the same.

The replacement of Sy by an estimate raises the issue of bias genvration in
the estimatex of 5.\!' This is not a prablem with the least squares algeriths, sinee
only lincar transformations are made on the unbiased estimate of the sensor eross.
coherence matrix. Such is not the case for the MLM algorithms, though, because
they involve non-linear in\'ersion‘ operations. Both Capon and Goodman {1} and
Scheer {73] have investigated the resulting bias in some detail.  While this is
generally a matter of some concern when using MLM algorithms, the coherent
interference problem (to be discussed presently) eauses such large errors in this
application that the bias issue may be considered moot here.  None the less, it
should be noted that, in general, abs-lute levels returned by MLM algorithins mnst

be corrected in order to guarantee quantitative validity,

5.6 Performance of the Various Modal Beamformers

The previous discussion defines four dutferent possible approaches to the madal
beamforming problem. These approaches are:

L. Single beam least squares (conventional) modal beamforming,

2, Multiple beam least squares modal beamforming.

3. Single beam MLM modal beamforming,.
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4. Multiple beam MLM modal beamforming.

Judicious selection from among these various methods requires that their
relative performances be assessed under conditions likely to be encountered during
the actual data reduction. The next several sections address this tazk. The leng.d
and complexity of the diseussion make a short everview of the eventual econclusions

in order.

The theoretical performance of the single beam least squares heamformer is
investigated in next section. This simple approach has twe attractions: it is easy to
implement; and it is quite robust.  However, even fundamental theoretieal
caleulations demonstrate that the FRAM IV vertieal array allows only the fiest
mode to be reliably extimated at the lowest frequencies of interest.  Such
performance is clearly inadequate, so that* the other algorithms must then be

considered.

The two MLM algorithms are investigated in the following seetion.  Mode
coherence is shown to he a major factor in the performance assessment of both these
methads,  The single beam algorithm is shown to be theoreticalls superior to the
nmultiple heam algorithm if the individual acoustic modes that make up the ~ignal
are incoherent [phase random) with respect to each other. This method wounld be
the processor of choice for such a situation, since it also offers higher resolution than
either of the least squares approaches. One of the most significant conclusions of
Chapter 7 is that the received mode field is highly eoherent in the Aretie, though,
Indeed, some preliminary indications of this conclusion have already been presentedd
in Figures 3-9 throngh 3-12. For » signal ficld consisting of coherent modes, hoth
the single and multiple beam MLNM adgorithms perform inadequately when applied
to the vertical array data, although they may still be suecessfully applied to the

horizontal areay data. This issue is disenssed in some length, and it is demonstrated
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that the fundamental cause of the difficulties iz mutual coherent interference

between the various modes.

In the final section, the multiple beam least squares heamformer is studied.
This approach is shown to possess somcvrhat better resolution than the single beam
least squares processor and is not affected by the coherent interference issuex thit
plague “he two MLM algorithms, Therefore, the multiple beam least squares

method is selected for use in reducing the vertical array data,

5.7 Performance of the Single Beam Least Squares Beamformer

The fundamental izsie involved in any assessment of the performance of the
single beam least zquares beamformer is its ability {or inability) 1o distingnish
between signal energ,\: propagating in different modes. To investigate this guestion,
Figure 5-1 has been gesierated to provide a measure of the theoretical modal
resolution that can be expected from the algorithm. This figure consists of a
contour plot. of a surface, the height of which represents the outpur of the
heamformer for an array consisting of the IR recorded elements of the FRAM IV
vertical array. The vertical axis shows the mode which the beamformer is to detect
(or, in a more traditional parlanee, the mode to which the beamformer is steered),
while the horizontal axis indicates the one mode actually present in the artificially
created signal field which the beamformer is processing.  The theoretical output of
the beamformer for each possible combination of the mode actually present and the
made steered to is used to define the surface, which is then contoired on a &8 seale
2.5 dB per contour). The first 10 modes of the 30 Hz mode set have been used in

the generation of Figure 5-1.

in analogy to plane wave beamforming in bearing, cach horizontal eross-

seetion of Figure 5-1 may be considered to be the madal *heam pattern® that is
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obtained when the array is steered to that particular mode. However, it must be
stressed that the mode domain differs from the bearing domain » »'ng
fundamentally discrete in nature. Thus, for this and all other plots hav ..g one or
more axes indexed in mode number, the results shown at non-integer values of mode
number are only linear interpolations between the true data, which exists only for
integer mode numbers.  This technique of displaving results is used so that large
quantities of information may be displayed in a compaet manner. To emphasize the
diserote nature of the data, a dark grid has been added to the plot at integer values

of the mode number.

The ealeulations displayed in Figuree 5-1 are thearetieal in that they have heen
computed with perfectly known mode shapes, sensor positions, and sensor eross-
cokerence matrices. In particular, complications caused by the substitntion of an
estimate for the actual SN matrix have not been considered.  The cross-coherence
matrix used in the computation of the figure consists of one mode of unit amplitude

in background noise that is spatially white, i.e.

S.=EEf +) |’ (5.25)

where

[EJ* = E} E; (5.26)

Here E; is the steering vector of the mode indicated by the horizantal axis, That is,
it is the particular column of the steering m:nri.\'E defined in equation (1.1) that
deseribes the mode assumed to be present in the signal field. » is the inverse of the
effective modal signal-to-noise ratio: a value of 107 has been used in the generation

of Figure 5-1,

A beamformer of perfeet resolution would ereate a ridge of 0 dB ontputs along

the major diagonal of the plot. This ridge would be of narrow crosssseetion, with
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Figure 5-4: Theoretical Modal Sidelobe Pattern - 47 Hz Single Beam
Least Squares Beamformer for 45 Modes (zvery other element only)
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the output immediately falling to a floor of about -30 dB (the level of the white
noise included in the cross-coherence matrix) for any off-diagonal points in the grid.
Figure 51 shows quite graphically that the single beam least squares modal
beamformer is far from ideal at 30 Hz when applied (o the FRAM IV vertical array.
The first mode is clearly resolved; about 20 dB of separation is observed between it
znd the second mode. To lesser degrees, modes 2 and 3 can also be separated. with
ahout -10 dB of leakage between modes 2 and 3. and about -7 dB between modes 3
and 4. lHowever, all modes bevond the third can be seen to be fundamentally
unresolvable with the available array. For example, the sidelobe between medes
and 5 is, at best, down by only 3 dB; henee, energy from cither mode 4 or mode 5 is
capableof generating large output levels when the beamformer is steered 1o mode 4,
It can be concluded that the single beam least squares modal heamformer is
theoretically capable of resolving no more than 3 modes at 30 Hz. The realitics of

desling with actual data can be expected to degrade performance still further.

Similar investigations at other frequencies indicate that the algorithm ean
resolve only a single mode at 15 Hz, 5 modes at 47 Hz, and only about & mexdes even
at 71 Hz. Figure 52 displays the results for the IR elements of the FRAM IV
vertical array at 47 llz.  Note that the range of modes displayed in Figure 35-2
extends to 45 versus the 10 displayed in Figure 5-1. This is done 1o demaonstrate the
different forms of aliasing that are possible. The major modal sidelobes observed in
Figure 5-2 can be divided into two types. One type is a general broadening of the
central ridge with increasing mode number. The other type is a general banding
that occurs at right angles to the central ridge. and is prominent at higher maode

numbers,

The broadening of the central peak sidelobe structure in Figure 5-2 can be

attributed to the problem of inadequate array length, as shown in Figure 5-3. This
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figure haz heen generated from the 47 Hx mode set in a fashion identical to that
used in the creation of Figure 5-2, except that the botiom € elements in the array
have been excluded from the beamlormer, effectively halving the array aperture.

The resultant large increase in the width of the central peak is readily observed.

In contrast, Figure 5-4 has been recreated from Figure 52 hy eliminating
every ocher recorded sensor, rather than the bottom nine. The number of sensors
has again been halved, but now in such a way 33 to retain the total array aperture,
As expected, the width of the central peak in Figure 5-4 is comparable with that of

Figure 5-2. However, the band®. g obzerved at the higher modes has now moved

down in mode number. Thi - Sl due to an inadequate sensor papulation in
the available array aperture. -t the pattern does not accur until one or hoth
of the injected mode number &, beamformed mode number is greater than the
number of sensors in the vertieal {1R in Figure 52 and 9 in Figure 5-4).

To better understand the causes of the two types of aliasing, one must firs
consider how the beamformer works in a physieal sense, In essence, the single heam
Jeast squares algorithm uses the elements of the vertical areay 1o effect a finite sum
approximation of the mode orthogonality integral {equation (2.8)). The amonns of
aliasing is an inverse measure of the effectivenvss of this sum in approximating the
integeal. Too great an inter-sensor spacing results in andersampling the aperinre of
the areay, which, in turn, eauses aliasing similar o that generated when a time
series is sampled below the Nyquist rate.  This type of aliasing generally occurs
between mades of significantly different mode number, as is demonsteated by the
banding effeet it generates.  On the other hand, a vertical areay aperture of
inadequate length can cause signifieant  portions of some of the mode shapes
involved to be exeluded from the integeation, also eansing anomalous resulis, i

this ease, though, it is g('llt'r:lll}‘ modes that are close in mode number that ook
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most similar; hence. this type of aliasing primarily contributex by widening the
central ridge of Figurez 5-1 through 5-4. A study of the mode shapes presented in
Figures -4 through 4-7 verifies this concluzion. At every frequency, the firt mode
nol resolved by the single beam least squares algorithm is also the first to have a
significant. portion of its mode shape extend below the 960 m length of the array. In
some respects, the two types of aliasing are alse akin to the local versux glahal error

prablems encountered in 1arget detection and estimation theory [82].

From the above discussion, it becomes obvious that, in the frequency range of
interest, the modal resolution available from the FRAM IV vertical array is
fundamentally limited by its length. At the lowest frequencies available in the data
set, not more than a single mode can he resolved by the conventional spatial
matched-filter; even at the highest frequencies in the data set, only about 104 of
the modes that might contribute significantly 1o the reecived fivld can be resolved,
Such performanee is clearly inadequate, requiring consideration of higher resolution

madal heamforming methods.

5.8 Performance of tae MLM Beamformers

5.8.1 Performance of the Single Beam MLM Beamformer for Incoherent
Modes

When applied to plane wave beamforming. the MLM algorithm is normally
considered to be a high resolution alternative to least squares {conventional)
beamforming. From a theoretical viewpoint, a similar interpretation can be made
for modal beamforming,  ‘This is illustrated in Figure 3-5.  The contour plot
displayed in this figure is identical to that of Figure 31, exeept for the algorith
employed in computing the side lobe patterns, Here, it is the theoretieal output of

the single beam MLM algorithm at 30 Hz that is shown, rather than the output of




-143-

. 4 8 & @ = «

to oo

| 23 2.

o

Figure 5-5: Theoretical Modal Sidelobe Pattern - 30 Hz Single Beam
MLM Beamformer for 28 Modes (all 18 elements)
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the least squares algorithm displayed earlier. The same SNR as used earlier (30 dB)

has been assumed in the generation of this figure.

The result. displayed in Figure 5-5 is very close to that of an ideal modal
beamformer, 4nd provides the motivation for investigating the MLM algoritﬁnn in
modal decomposition applications.  However, practical issues involving the
implementation of the processor typically limit this ideal theoretical performance.
In particular, Figure 5-5, like Figures 5-1 through 5-4, has been computed using o
perfectly known sensor cross-coherence matrix. To measure the the effect of using
only an estimate of the §N matrix, sets of synthetic data have been created and
processed using the single beam MLM algorvithm. The processed ontput for one of
these data sets is displayed in Figure 5-6. This figure is once again a contour plon
with the surface height representing modal amplitude on a dB reale. Here. though.
the horizontal axis represents time, while the vertical axis represents the mede
number to which the beamformer is steered. The plot consists uf the time series
over 20 minutes of the amplitude estimate for each of the 1R modes displayved.
These estimates have heen melded together to form the contoured surface by linear
interpolation between adjacent modes. As was the case earlier, the only real data in
the vertical oceurs at integer values of the mode number. “Tie contoured format is

used only beeause it allows information to be displayed at a high visual density.

To interprot the results displayed in Figure 5-6, one must first understand the
details involved in the creation of the data set.  The sound field has been
synthesized from the 30 Hz mode shapes presented in Chapter 4, with each of the
odd mades between the first and the fifteenth contributing to the sum with unit
amplitude, Sinee only the add modes are included e the sound field. the even mode
amplitude outputs indicate the amount of energy that the algorithm allows + ank

into their estimates. To better differentiate between varions modes in the output,
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Figure 5-6: Output of Single Beam MLM Beamformer versus Time
for Incoherent Synthetic Data at 30 Hz




-145-

o o A" ”" 0 0 o 6 o ©
0O 0 0 © W A a0 N 6 v O n
o 0w O wn ~
o O N N N O ™8 B r O W
N NN - e e o= &N M PA oM
PR Y R Y T T T T A L Y Y S | 3
¥ X X X X X ¥ M X X ¥ X X X S
() 10.00 WO START: 1 00 w s
8 16 14 a
L~
o /

N
o
-‘2\5__/"'

]

AU
s

N
e

N
VA
\J]

e AN

/\//__\
/\—’qﬂ_\
S — >\
7

Q

Q
(-]
-
4

LN N 2

18 16 14

END I8 00 MO

TIK 1 00 N0 SPAN 17 00 ¥ o] CHAN 1

CONTY 2 50 00 MAY 0 00 08 MIN -32 50 08

30 HZ - SINGLE BEAM MLM BEAMFORMER - TNCOHERENT SYNTHETIC DATA

Figure 5-6: Output of Single Beam MLM Beamformer versus Time
for Incoherent Synthetic Data at 30 11z




_ -146-

the unit amplitudes have been modulated by sinusoids with periods of 20 minutes:
the full time extent of the plot corresponds to exactly one period of the madulation.
The starting point of the modulating sinusoid has been adjusted by 90 for each
succeeding odd mode, so that the modulation for mode 1 looks like a cosine
function, while the modulation for mode 3 appears as a siz‘;‘e function, ete. Each of
the various modal cautributions has been provided with an independent random
phase component, so that they are phase random with respect to cach other. The
resulting field can then be considered to be a sum of incoherent modes.  The
random phase fluetuations have heen created with a temporal correlation length of
32 see (20 points), so as to approximate the effect of the final preprocessing filter. A
simall amount of spatially uncorrelated white noise (at about 30 dB SNR) is included

in each hydrophone’s time series,

The synthetic data set has been created in a format identical to that of the
preprocessed real data; namely, a co:;\plc.\' time series sampled every 1.6 seeonds for
each recorded sensor.  The heamforming itsell has heen computed using an
averaging window of 2 minutes for _§_‘., representing about o degrees of freedom,
with updates once a minute (for a 50°¢ overlap factor). The resulting estimate of

the sensor cross-coherence matrix is subsequently stabilized for inversion by the

addition of a small positive constant to the diagonal terms.

In Figure 5-6, the first mode is clearly resolved. The amplitude modulation is
apparent. demonstrating both the proper period and the correct initial phase. The
output for the second mode indicates that the processing provides more than 20 (B
of rejection between it and modes modes 1 and 3. Similarly, all modes through the
seventh are well resolved, and modes & through 11 ean be at least partially
distinguished.  This performance certainly exceeds that of the single beam least

squares algorithm, even without considering the effeets of an using only an estimate
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of -§-\, on the latter.

6.8.2 The Relationship Between the Single and Multiple Beam Variants
of the MLM Beamformer for Incoherent Modes

Becanse Hinich [42] has proposed a multiple beam MLM algorithm for modal
beamforming, it is important to consider the relationship of the two algorithms in
the case of incoherently summed modes. To see the nature of the relationship. one
must review briefly the technique by which the MLM algorithm assures maximum
signal-to-noise ratios at the beamformer output. From a linear algebra perspective,
the problem consists of determining N complex unknowns, each representing the
complex gain applied-to the observed field at a given sensor.  The problem then
contains N degrees of freedom. For'the single beam case, the MLM result is
obtained by effecting a constrained minimization of the noise power. The constraint
guarantees andistorted passage of the desired signal through the bheamforming
process, and uses one degree of freedom. The remaining NV — 1 degrees are then
employed to minimize the power of the noise in which the signal is embedded. This
minimization may be visualized as an optimal placement of N =1 nulls in the

modal beam pattern.

By comparison, the multiple beam variant can be considered to have M. N
degrees of freedom, representing the unknown complex gains to be applied at any
given sensor for each of M beams. Cursory consideration of the problem shows that
at least M distortionless constraints (one for each beam) are required. A more
detailed investigation shows that Af? constraints are actually placed upon the
problem. The extra constraints represent decoupling requirements hetween the
different beams.  These are needed to guaranter accurate energy accounting:

without them, energy detected on one beam could also leak throvgh to other beams,
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" and thus be accounted for multiple times. Thus, there are a total of M- (N — \))
degrees of freedom available for minimizing the noise on M beams, or only N ~ A
degrees of freedom for each beam. The rawultiple beam MLM algorithin can then be
viewed as the equivalent of single beam result with some extra decoupling
constraints included. These extra constraints have the effect of loeating « priori

some of the nulls that would otherwise be free for noise minimization,

The upshot of this rather abstract discussion is that one always obtains better
SNR performance from the single beam form of the MLM algorithm than from the
multiple beam variant when processing an incoherently summed made field. This is
obvious, since the multiple beam approach requires prior placement of nalls that
would otherwise be located to optimally reject noise; this prior null placement can
never improve the total noise rejection. A full and mathematically rigorous
argument to the same effect is presented in Appendix B. One simple indieation of
this behavior is that when M = N, both the least squares and MLM algorithms

reduce to the same solution

F S

S, =E"'S\(E*)", (5.27)

where the steering matrix E is now N X /N and may be assumed to be non-singnlar,
Such a result is expected, since under these conditions all the available degrees of
freedom are utilized as constraints, leaving none for the noise minimization that is

the source of the MLM algorithm's superior performance.

The conclusion to be drawn from Figures 5-1 through 5-6 and the previous
discussion is that the single beam MLM modal beamformer is the algorithm of
choice for vertical array dat2 iodal decomposition when the sound field consists of
incoherent modes.  This finding must be tempered by the results of the following
section, which show that it is very sensitive to how well the incoherent mode

assumption is met in practice.
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Figure 5-7: Output of Single Beam MLM Beamformer versus Time
for Incoherent Synthetic Data at 47 Hz
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5.8.3 Performance of the Single Beam MLM Algorithm for Vertical

Arrays in the Presence of Coherent Interference

As has already been indicated in Chapter 3 and is conclusively demonstrated
in Chapter 7, the various complex mode amplitudes are highly coherent in the
FRAM IV data set. This mode coherence hus a significant elfect on the
performance both of the MLM algorithms, making neither the single heam processor
nor the multiple beam processor applicable to the present problem. It is revealing
to study this problem in some detail, so that the elfects of mode colierence on the

MLM algorithm can be better understond.

Figure 5-7 dizplays the output of the single beam MLM maodal beamformer for
a synthetic sound field at 47 Ha. In all other particulars except frequency, hoth the
synthetic data generation and the processing is identical to that of Figure 5-6. Most
importantly, the synthetic field once again consists of the odd modes between 1 and
15 combined in a temporally phase random fashion, so that the various modal
contributions can be considered to be incoherent. Each mode is once more assigned
an amplitude of anity and sinusoidally modulated. At A7 Hz, the first 9 modes are
easily resolved, and all of the modes through mode 15 (the last one present in the

signal field) are at least partially resolved.

Like Figure 5-7, Figure 5-8 also displays the output of the single beam MLM
modal beamformer for a synthetic sound field at 47 Hz. Both the synthetic data
generation and the processing is identical to that of both Figure -6 and Figure 5-7,
with one important. difference: while the modal contributions to the seund field in
Figures 5-6 and 3-7 are summed incoherently by injecting random  phase
fluctuations that vary independently from mode to mode, the modal contributions

for Figure 5-2 are summed in a coherent fashion. This is accomplished by injecting

a phase Muetuations that are constant across all modes. so that a constant phase
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relationship is maintained over time between the various modal amplitudes. In
striking contrast to the results of Figure 5-7, the resulting output from the single

beam MLM beamformer for this case is so poor au (o be exsentially meaningless,

Having demonstrated numerically that the issue of mode coherence is of
extremely important in determining the performance of MLM modal heamformers,
it is next important to develop a more intuitive understanding of the problem,
Consider a sound field consisting of a single mode in spatially white noise. Lot the

the complex amplitude of the mode that is present be a_ and the stevring vector

L

associated with it be denoted by E . This medal steering vector is the partienlar

pI
column of the steering matrix E defined in equation (1.4) that deseribes the mode
assumed to be present in the signal field. The sensor cross-coherence matrix for
such a situatica is

ry — e + .2 2 I e
where )\ is the inverse of the effective modal signal-to-noise ratio and

2 __pt I
Igpl - Ep E-p . (','29)

The single beam MLM beamformer estimates the squared magnitude of the

H . . 0 o« 9
complex amplitude of the mode to which it is steered, it |=. as

i = (5.30)

In contrast to Q},‘ which is the steering vector of the mode actually present in the
signal field, E, is the steering vector of the mode to which the beamformer i
steered.  Using the identity given in equation (A.3). it is possible to compute the
inverse of S.\' as given by equation (5.2R). This result may then be substituted into

equation (5.30) to vield
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. (Ial,le li,l”') A (1 +3) | (5311

I&I = ] a
' B /14—

Here oy is the normalized inner product between E; and E’

EFE
oy, = = =p (5.32)

*~ EJIE,|
The magnitude of Py always lies in a range from 0.0 to 1.0.

Figure 5-5 is nothing more than equation (5.31) evaluated at various
combinations of E, and _E_p. It is easy to sce how the MLM heamformer obtains its
high resolution. When the beamformer is steered to the mode that is present in the
field, Pop takes on a value of 1.0, leading to an output of

la I =1 (1 + ). (5.33)
On the other hand, when the mode present in the signal field is different from the
mode to which the beamformer is steered, ths value of Poo is small if the two nuxles
are well resolved by the array. In fact, for the limiting case of a vertieal array of
continuous aperture extending aeross the full sound channel, Pyp 15 guaranteed to he
zero for all possible made pairs, since the numerator of equation (5.32) approaches
the orthogonality integral of equation (2.R). Thus, the squared magnitude of Py ix

generally negligible for well resolved modes, leading to

1] 0
. al”|E |°
li|* ~ » (I-P-I—lﬂ"-) : (5.31)
|E,[*
Since the value of x is small for high SNR signals, {in Figure 5-3, a value of 1074 i

used), excellent rejection is obtained when the mode present is not the one to which

the beamformer is steered.

In the case where the sound field consists of two modes whose contributions
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are incoherent with respect to each other, the sensor cross-coherence matrix can be

writlen as

Sy =la, "B, E} + la  E,, E + 3o, P IE, 1. (5.35)
where Qﬂ and §p9 are the steering vectors of the two modes contributing to the
signal field. Here, for simplicity, the white noise scaling has been kept identical to
that of equation (5.28). Equation (5.33) can alzo be inverted and then substituted
into (5.30) to obtain a general result. In this case, it is of the most interest to atudy
the effect of the presence of the second mode on the beamformer estimate for the
first. mode, which ean be obtained by setting E, equal to _E_p‘. This leads 10

.0 2 M (55 +1) ) .
S = - l + o ’ . -30

where

0 D]
- E -
b-—l" IE,| (5.37)

- 1) o *
0,47 IE,

Again, it is easy to see how high resolution is obtained: if the two modes
present are well resolved by the array, then the squared magaitude of Pyl is onee

more negligible, giving an output of

. 9 )] -
|“pll- = Iupll- (l + x) * (-')..’.Q)

This result is identical to that of equation (3.33), which means that the single beam
MLM beamformer almost completely eliminates the effect of the presence of the
second incoherent mode in the signal field.  Such a conclusion is certainly in

agreement with the results of Figures 5-6 and 3-7.

The ability of the single heam MLM algorithm to diseriminate aeninst the
- (-3 )

presence of the second made is inherently tied to the ability of the array 1o resolve
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the two modes. If the two modes are well resolved, then ’9"' p'll..‘ is small. and
therefcse justifiably negligible.  On the other hand, if the two modes are
fundamentally unresolvable, then ignoring this term is & poor approximation at best,
In cither case, though. the perforinance is at least as goad as that of the single beam

least squares beamformer.

To highlight the difference between case where the the signal modes combine
incoherently and the case where they remain phase locked with respeet to vach

other, the preceding problem is now repeated for a sound field consisting of two

modes that sum coherently. In this situation, the sensor cross-coherence matriy is
S = + 5
§.\’ - (“pl -E-:p! + A2 -E-p‘l) (“pl Epl + A -E-p'l) + (5.30)

D 3z

Again, the white noise scaling has heen kept identical to that of equation (5.28).
Comparing equations (5.35) and (5.39), it can be seen that the effeet of the modes™
being coherent is to force the retention of cro:s-terms that would average to zero in
the incoherent case. Inversion of equation (5.30) an:d subsequent substitution into
(5.30) is easily accomplished. Upon steering the beamformer to the first mode, one

obtains

n
a .|= A (0N +¢
oyl { ),, : (5.-10)

.2

i I* =
l -

where b is again defined as in equation (5.37) and ¢ is

03
oy By e, Bl
—_ 3y o

I“p')l- Igl,gi-

(5.1}

. R
Assuming as before that the modes are well resolved by the array, I,;”lp,,|' can

again be neglected, so that for typical white noise levels the output is approximately
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. ] ] -
li I° = e (xa, %) (5.42)

The resu'ting output is now proportional to \. If both the modal steering vectors
are assumed to be of roughly equal norm, and if the modal amplitudes are
approximately equal, then ¢ can take on values of between 0.0 and 1.0, depending
on the relative phase between the two modes and how well they are resoived by the
array. For well resolved modes, ¢ approaches a value of 2.0, since the steering
veetors associated with the modes are close to orthogonal. On the other hand,
equation (5.34) demonstrates that the background noise floor that leaks into any
mode is approximately A |am["2 under the assumption of equal norms for different
modal steering vectors. Thus, the presence in the signal field of two’coherent, well
resolved modes of roughly equal strength causes the single beam MLM algorithm to
generate output estimates of these modes that are only 3 dB above the noise floor,

no matter how strong the actual modal signals. This is exactly the phenomenon

seen in Figure 5-8,

Further investigation of equation (5.40) vields two significant conclusions.
First, even very small levels of a second coherent mode can trigger the interference
effect. Again assuming that the modes are weil resolved, consider the limit as e
vanishes.  For this case, ¢ approaches the value of 4, and equation (5.40) then

simplifies to
. 9 o b\ ..
|“pl| =~ I“pll bk +l . (.).:lo;)

. ) . .

The result approaches the correct value of l“,,l" only if b\ is much greater than 10,
indicating that coherent contributions from other modes are negligible to the MLM
processor only if they are at or below the background noise level. Second, the effeet

of coherent interference on the single beam MLM algorithm is worse when the two
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modal steering vectors are well resolved than it is when they are poorly resolved. In
. " .
the limwt as Ep., approaches _E_“. lppl p‘.‘.l- takes on a value of unity, and the ontput

becomes a very reasonable

. 2 -

This is exactly the opposite of what might be intuitively expected. Beamforming
algorithms typically experience greater difficulty when multiple sources look very
similar than when they are easily distinguished. But the nature of equation (5.40) is
such that more realistic results are achieved from the single beam MLM algorithm
.,l:3 i8 near 1.0 (indieating that the interfering modes are

pip2
poorly resolved) than when it is close to 0.0 (meaning that the interfering modes are

when the value of |p

well resolved).

For the ideal case of a continuous verticat aperture ex(éndin; across the full
channel, the single beam MLM approach is completely inappropriate when the
modes contributing to the signal ficld remain coherent. This is because mode
orthogonality guarantees that Pyip2 is always zero, a situation which leads to the
worst possible performance of the MLM processor. As will be investigated in the

sequel, its suitability for use with horizontal arrays is somewhat better.

The fundamental reason that coherently interfering modes cause the single
beam MLA! algorithm difficulty is that they violate the assumption of statistical
independence between signal and noise. In the single beam approach, the signal. by
definition, is the mode seclected for detection; any other modes present are
considered to be part of the noise against which the processor is to discriminate. If
the modes are phase random with respect to cach other, then the selection of vne
mode as the signal while the others are included in the noise causes no violation of

this fundamental assumption. On the other hand. the definition of a single mode as
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the signal destroys the assumption of independence between signal and neise when
the modes remain coherent. The effect of the resulting coherent interference is'to
corrupt the spatial structure of the signal mode. The beamformer then rejects the
energy carried in the signal mode because the mode is no longer recognizable. This
is why cquation (5.42) indicates that the output is roughly the same as background

noise levels.

5.8.4 Performance of the Multiple Beam MLM Algorithm for Vertical
Arrays in the Presence of Coherent Interference

Since the single beam MLM algorithm is clearly inappropriate for the task at
hand, the effect of coherent modal interference on the multiple beam variant is now
investigated.  From the discussion in Sections 5.2 and 5.3, it can be seen that the
fundamental advantage of the multiple beam approach is that it expands the
aumber of modes which are simultancously designated as signal from 1 to M, the
number of heams included in the multiple beam beamformer. If a multiple beam
MLM algorithm that includes all modes making significatit coherent contributions to
the total signal field is implemented, then the statistical independence of signal and
noise can be reestablished, and the resulting algorithm should, in theory, produce
acceptable results. A number of practical considerations limit the applicability of

this approach, though.

The issue of greatest importance is the proper selection of M, the number of
modes to include in the beamf{ormer. As mentioned earlier, this choice is basically a
mlodoling decision, since the inclusion of extra modes in the beamformer is
tantamount  to improving the initially assumed signal model.  Including an
insufficient number of modes leaves one with the same problem that plagues the

single beam approach; the algorithm performs poorly because the signal and the
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noise, as implicitly defined by the model selection, are not statistically independent.
On the other hand, making M too large is also detrimental, for two reasons. The

original derivation limits the number of modes that can be handled simultancously

to the number of sensors available, Otherwise, E"' _Nl E is of less than full rank,

and wiarefore uninvertible,

For the FRAM IV vertical array (and many other vertical arrays), the fact
that many of the higher order modes cannot be adequately resolved places an even
more restrictive limit on M.  Since two modes become unresolvable when the
steering vectors describing them become too similar, the inclusion of multiple
unresolvable modes in the steering matrix quickly drives it towards rank deficiency,
so that inversion of the quadratic product creates serious difficulties from the
viewpoint of numerical stability. The impact of this issue on the multiple heam
least squares algorithm is studied in some detail in Section 5.9. Its effect on the
multiple beam MLM algorithm is similar, limiting the effective number of heams
that can be handled simultaneously to as few as 3 or {4 bhelow 20 Hz, and no more

than perhaps a dozen even at 71 Hz.

It has been shown previously that any mode contributing coherently to the
signal field in an amount that exceeds the background noise level must be
considered significant (see equation (5.43)). Thus, one reaches the conclusion that it
is not possible to implement a multiple beam MLM processor eapable of dealing
with the coherent interference problem for the FRAM IV vertical array. However,
given a sufficiently improved array, such an approach could be possible,  The
primary remaining issue under these conditions would be one's ability to invert
large dimension arrays (perhaps 30 X 30 or 50 X 50) in a numerically stable
fashion. The array necessary to support such processing would need to extend

much further in depth. so that it could adequately resolve significantly greater
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numbers of modes. Only a relatively modest increase in the number of hydrophones
would be nceded. The addition of further sensors beyond this amount would be
beneficial, though, since the performance improvement that MLM algorithms over
equivalent least squares algorithms is fundamentally linked to the size of N — M

(the excess of sensor count over beam count).

5.8.5 Alternative Implementations of the MLM Algorithm in the

Presence of Coherent Interference

Alternative implementations of the MLM algorithm in the presence of
coherent interference are possible if one is not interested in actually measuring
individual modal characteristics.  While these approaches are generally not
applicable to the present problem, it is of interest to understand their relatiouship

to it.

Consider again the sensor cross-coherence matrix for two coherently
interfering modes (equation (5.39)). A consideration of the cigenvalues and
cigenvectors of this matrix quickly leads to the conclusion that the output of the

single beam MLM beamformer is maximized when a steering veetor of the form

E =k (ap! E, +u, Qp,z) (5. 15)
is used [20]. Here k is an arbitrary sealing factor that would typically be used for
normalization of the steering vector. This observation forms the basis for all these
alternative implementations. If the relative mode amplitudes and phases were
known u priori, then an optimal detector could be created by beamforming to a
steering vecetor which was the properly weighted sum of the individual modal
steering veetors.  In this thesis, »f course, these are exactly the parameters to be
measured. but there may be ways of predicting them accurately enough to allow

significant improvements in detection processing.
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One alternative approach is to index the beamforming across a set of steering
vectors generated by various weighted sums of the modal steering vectors; arbitrary
variations of the modal amplitudes and phases become impractical beyond a very
few modes, however. A more promising variant is to index the beamforming across
the two parameters of source range and depth, using one or another of the different
propagation theories currently available to prediet the mode amplitudes and phases
needed to compute the sum. The advantage of such a method is that source range
and depth are immediately available once detection is made. Several preliminary
efforts in this direction show promise. The work of Fizell and Wales [34] is of

special note, since it applies the approach to actual field data.

5.8.8 Performance of MLM Algorithms for Horizontal Arrays in the

Presence of Coherent Interference

After much effort, two important conclusions have been reached concerning
the use of the MLM algorithm for reduction of the FRAM IV vertical array data set,
The first is that the MLM algorithm works very well when the modes making up
the sound field are incoherent,  For this situation. the single beam varinnt is
guaranteed to provide better performance than any multiple beam variant.  The
second is that the MLM algorithm has a great deal of difficulty when the modes
comprising the sound field remain coherent with respect to each other. In this case,
the performance is worst when the coherently interfering modes are well resolved by
the array rather than poorly resolved, as might otherwise be expected.  The
difficulties that arise when coherent interference is encountered are severe cnough to
make both the single and multiple beam versions unattractive for use with the
vertieal array data. On the other hand, the MLM approach can still be used on the
horizontal array data if adequate care and caution are exereised. It is revealing to

investigate why better performance might be expected of the single beam MLM
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E,
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E.

Figure 5-9: Components of a Coherent Sound Field for a Notional
Horizontal Array

beamformer in a coherent mode field when it is applied to horizontal array data

than when it is used with vertical array data.

Consider a situation where a horizontal array is receiving a large number of
coherent modal arrivals.  Let the steering vector associated with the KM mode be

E,. and its complex amplitude be denoted by ay. The sensor cross-coherence matrix
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is then of the form
- 9

S EEt+o

—N = —g =g .l. ? (50‘[6)

where E_is a weighted sum the steering vectors associated with the various modes
that are present

E,=) «E. (5.47)
This sum is shownkpictorinlly in Figure 5-9. As discussed in Section 5.4, the madal
steering vectors for a horizontal array are identical to the steering vectors for plane
waves, with the exception of a scalar equal to the size of the mode shape at the
array's deployment depth. The equivalent plane waves are all traveling in the same
horizontal direction but with slightly different horizontal phase speeds. Under these
conditions, the modal steering vectors can be expected to he almost parallel to both
one another and to the total sum. Figure 5-0 has been drawn to reflect this

situation.

Assume that the single beam MLM beamformer is steered to the i mode. Its
output. can then be evaluated directly from equation (5.31) by setting a, = 1.
_l;3p =E_,and E, = E. Sincc E, and E, are almost parallel, it is not unreasonable

to represent their inner product as

P =1-c,. (5.1%)

where ¢, is small with respect to unity but still large when compared to ». The
case where ¢;, is the same or smaller than X is not of interest, since this generally
corresponds to operational situations where the array is fundamentally unable to
resolve the modal structure (such as a horizontal line array operated near
broadside). The amplitude estimate that the beamformer makes for the M mode is

then
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E 2
laf* = (—‘-]‘ 'n) 2 (5.49)
|E|®

i
Although this output is still proportional to the noise level ), the effect is greatly
mitigated by the small denominator ¢,,, which is typically on the order of 107! or

1072,

is

The result presented in equation (5.49) raises the very important question of
why the resultant output should bear any resemblence fto the actual modal
amplitude distribution. It is not at all obvious why the estimate should be large
when the actual mode amplitude is large and why it should be small when the mode
amplitude is small. Of the four terms on the right hand side of equation (5.49). only
the two in the denominator depend upon the mode to which the beamformer is
steered. The variation of |§,.|’-’ with mode number is only a scalar related to the size
of the mode's shape at the array depth, and, hence, of no practical consequence,
Indeed, if the steering vector of the equivalent plane wave is instead considered,
even this simple variation with mode number is eliminated, and the term can be
considered to be constant. Thus, the change in ontput level with mode number is
principally caused by the ¢, term, so that the estimator output tracks the actual
modal amplitude distribution only il ¢, is generally small for modes of large
amplitude and big for modes of small amplitude. While this is never guaranteed to
be the case, a graphical argument can be made to support the conclusion that it i

often so.

Consider once more the sum of equation (5.47) and its graphical depiction
shown in Figure 5-0. E_ can be expected to lie in a direction that is closest to the
direction of the modes providing the largest contributions. For these modes, then,

(o 18 generally smaller than average. providing the desited peak in the modal
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amplitude distribution. The effect is most reliable when a single modal cogtribution
dominates all others as is often the case in the Arctic. ‘This situation is shown in
Figure 5-9. In creating this figure, the lengths of the various modal sicering vectors
have been assumed to be rcughly equal, and the amplitude of mode 1 has been
assumed to be much greater than the amplitude of any other mode. For this
situation, it is apparent that the angle between E_ and E, is smaller than the angle

E, makes with other modal stecering vectors.
It is the natural sensitivity of equation (5.49) to variations in <, that provides
the MLM algorithm with better resolution than the conventional beamformer  For

comparison, the output of the single beam least squares beamfurmer s

approximately
E)
. IEJ™Y- .
ifts = () 0 - ) 5.0
LK

While this resull provides & much better absolute level than equation (5.-49), its form
is such as to make it significantly less sensitive to variations in ¢, than the MLM

result,

Thus, the single beam MLM beamformer ends up providing the desired result
of higher resolution than the conventional beamformer when applied o madal
separation with horizontal arrays, although not for the reasons typically given to
explain its operation.  Additionally, the linkage through ¢, is highly non-linear,
making both absolute levels and relative peak levels highly suspect. although
positions of the peaks in mode number (or, equivalently, grazing angle or phase
speed) can generally be accepted as accurate. In previons cases where the MLM
algorithm has been used in the presence of multiple coherent sources, or with a

single coherent sotree in a stable multi-path environment, these effeets have

probubly been incorrectly attributed to the effect of the ML bias discussed earlier.
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The distinction is important, because in many situations one can accurately
compensate for the bias effect, whereas the extraction of reliable levels in the

presence of coherent interference is impossible.

In conclusion, the MLM algorithm still provides higher resolution in the
presence of coherent interference than conventional processing does when applied to
horizontal array data, despite the fact that the various arrivals are highly colierent,
This higher resolution is achieved al the expense of accurate peak levels and a
marked decrease in the robustness of the processing, though, The resulis are mosl
trustworthy in the case of one strong modal arrival dominating all other coborem
contributions to the signal field. Al of these effects can be seen in the resnltant

outputs of the MLM processor that are presented in Chapter 7,

5.9 Performance of the Multiple Beam Least Squares Beamformer

Since neitker form of the MLM algorithm can be reliably applied 1o the
FRAM IV vertical array data in a modal beamforming context, the multiple heam
least squares beamformer must then be considered as a high resolution alternative,
Such an approach offers several advantages. First, the multiple beam algorithm ean
be expected 1o provide at least marginally better performance than the single beam
variant il the number of modes included in the beamformer ix i ww?\‘\i\‘c-.
Because the multiple beam algorithm essentially attempts 1o it thy observed
pressure field with a model containing a greater number of parameters, closer
agreement with the data generally results. Additionally, since the derivation of the
multiple beam least squares algorithm requires no assumption abont the statistical
relationship hetween the signal and the noise. its performance iz not degraded by
coherent interference. It also provides some reliel from the inter-maodal sliasing

problems seen in the single beam least squares algorithm, although the improvement
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Figure 5-10: Output of Multiple Beam Least Squares Beamformer
versus Time for Coherent Synthetic Data at 47 Hz
(7 modes included in beamformer)
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is not as great as that which the single beam MLM algorithm would provide if it
could be applied. Fiually, the multiple beam version is somewhat more

computationally efficient than the single beam variant.

A typical set of modal amplitude estimates generated by the multiple beam
least squares approach is presented in Figure 5-19. For comparison, the equivalent
set of outputs from the single beam variant is presented in Figure 5-11. Similar to
Figures 5-6 through 5-8, the rnodal amplitudes are depicted as contours over a
surface consisting of time on the horizontal axis and mode number on the vertieal
axis. As mentioned earlier, the only real data points oceur for integer values of the
mode number; results plotted at non-integer mode values are merely interpolations

between adjacent data points.

The particulars of the synthetic data sets used to generate hoth of these
figures are identical to those of the earlier figures. Again, the synthetic signal field
consists of a coherent sum of the odd modes between 1 and 15, each with wnit
amplitude. The various modal amplitudes have once more been alternatively
moduiatcd with cosine and sine waveforms with periods of 20 minutes. Both plots
span the first. seven modes at 47 Hz. Ail seven are resolvable in Figure 5-10. About
20 dB of rejection is observed in the second mode and about 17 dB is seen in the
fourth mode. These results show some improvement over those of Figure 5-11,
where only the lower order modes can effectively be resolved, and where rejection in

the second and fourth mode troughs is somewhat less,

While the additional resolution provided by the multiple beam least squares
algorithm is not great, it is significant. This is especially true at frequencies below
20 Hz, where the single beam approach has difficulty resolving more than one mode.
It is for this reason that the multiple beam least squares beamformer has been

selected as the most attractive alternative for the modal decomposition of the
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FRAM IV vertical array data set.

$.10 Determination of the Number oif Modes to Model

The final topic to be addressed in this chapter is the proper choice of M, the
number of modes to be included in the multiple beam algorithm. Ideally, the choice
would include any mode likely to provide a significant contribution to the total
sound field seen at the receiver. However, the inclusion of an excessive number of
modes in the beamformer can lead to problems invoiving numerical stability, as can
be seen in Figure 5-12. In this figure, the same 47 Hz synthetic data used to
generate Figures 5-10 and 5-11 has been reprocessed with a multiple beam least
squares algorithm that includes the first eight modes ins' 1 of the seven used
above. By increasing M from seven to eight, the effective resolution has heen
decreased rather than increased; only four modes are now actually resolved. while

the rest are saturated by processing-induced noise.

To understand this effect. consider the output of the multiple beam least
squares processor for an input consisting only of spatially white noise. For such a

case, the sensor cross-coherence matrix is

Sy= ‘I. (5.51)

From equation (5.8), the output of the processor can then be evaluated as

S, = (E*E)!. (5.52)

It is obvious that as the M X M matrix EYE  becomes singular, one or  more
outputs of the processor grows without hound.  Numerieal instability in the
inversion can then make the algorithm extremely sensitive to even small amounts of

background noise. Therefore, a proper choice of M must be based on a compromise
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between the increased resolution and the decreased numerieal stability eaused by
the inclusion of additional modes.

The relative singularity of the above matrix can be quantified through the use
of the singularity cocfficient ¢, which is defined ax

Det [E* E| ..
| =—g——. (5.53)

Here, the Det [ -] notation is used to indieate the determinant of the matrix, while
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E, through E,, are the various column vectors comprising the steering matrix E.

The denominator consists of the product of the norms of these vectors.

The singularily coefficient has several very useful properties. First, it is
always unity when M = 1. Seccond, for any other value of M, it is unity only if all
the component column vectors are all mutually orthogonal. Finally, its value is
always in the range {rom 0.0 to 1.0. Since the coefficient is proportional to the
value of the matrix determinant, it can approach zero only as the matrix becomes
singular.  Thus, it provides a good indication of the relative singularity of the
matrix E* E.

Figure 5-13 provides a dB scale plot of this singularity coelficient for steering
matrices consisting of up to the first nine modes at frequencies of 15 Hz, 30 Hz, and
A7 Hz. In general, the coefficient remains close to 1.0 when small numbers of modes
are included in the stewring matrix, gradually decreasing as the mode connt
increases. Beyond a certain critical number of modes, thaugh, inclusion of further
modes in the steering matrix then causes the coefficient to fall rapidly towards zero.
Various methods may be used to define precisely this eritical number of modes,
Here, a trial and error precedure has been used to find a reasonable hreakpoint,
The singularity cocfficient has been compared against the processing output for
synthetic duta similar to that found in Figures 5-10 and 5-12 at various
combinations of frequency and mode count. This comparison shows that optimum
beamformer performance occurs for values of the singularity coefficient that are
slightly greater than 0.4, The critical mode count is then the largest number of
mades that can be included in the steering matrix without the covfficient excewding

this threshold.

This definition produces optimal results at all the frequencies tested in the

trinl and error procedure.  However. it may be influenced by the array




configuration, the modal structure of the particular channel investigated, and the
choice of moides included in the synthetic data. The sensitivity of the definition to

these various effects has not been investigated.

Using the above definition, the number of modes that, can be included in the
multiple beam algorithm at any frequency is readily found. This information is
presented in Table 5-1 for the frequencies available in the FRAM IV verticsl array
data set. Since the multiple beam processor computes the output of all its beams
simultaneously, the value also represents the number of inodes that can be resolved
at cach frequency. In all cases, at least three modes are resolvable: the number
increases with frequency, reaching a value of 9 madix at 71 Tz .\ comparison with
the mode shapes of Chapter - reveals that the last resolvable mode is the one in

which the lowest oscillation of the mode shape is still sampled by at least one senisor,

Frequeney Mode Ccunt
15.00 Hz 3
17.75 Uz 3
20.00 Iz 3
23.50 He 1
30.00 Hz 5

35.25 Hz
35.50 Hz
47.00 Hz
53.25 He
55.00 Hz
71.00 2

- =1 =~} v Ut
.

-
-

Table 5-I: Modes Resolvable by Multiple Beam Least Souares
Modal Beamformes




5.11 Summary

Several different methods for the decomposition into its modal components of
the sound field observed at an array have been presented and analyzed, Modal
decomposition is intimately related to the problem of beamforming. which has a rich
history in the literature. The primary theoretical difference between the two results
iz the choice of the basis set of functions on which the received field is decomposed:
traditional beamforming utilizes the set of plane waves, while the present offort
employs the normal mode finctions associated with the sound channel in which the
receiving array resides.  \When the two approaches are compared, the major
advantages of plane wave beamforming are the independence of the technigue from
knowledge of the sound channel and its equivalence with Fourier transform
techniques, which allows a wide body of knowledge to also be tapped. The principal
advantages of modal beamforming include the mathematically efficient nature of

the representation and the physical relevance of the resultant outputs,

“Two different approaches to modal heamforming have been addrsssed: the
least squares method and the MLM algorithm.  The two are differentiated by their
choice of weighting matrix used in computing the total square error to he
minimized.  The least squares approack weights all errors equally, attempting to
match the full received field.  The MLM algorithm, on the other hand. tries to
compensate for noise by selecting the inverse of the sensor cross-coherence matrix as
the weighting matrix. This selection has the effect of weighting noisy sensors Jess
heavily than sensors with clean signals for purposes of caleulating the total square
error.  Both methods can be implemented in either a single or multiple beam
format, generating four different approaches, all of which have been considered

here.
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As might be expected, the resulting solulion; for these different approaches to
modal beamforming all take on the forms ideatical to their plane wave processing
algorithm analogs. The only difference cceurs in the definition of the steering
matrix, which is the parameter describing the signal to be detected. In plane wave
beamforming, this steering matrix (or steering vector. when dealing with single
beam variants) consists solely of the complex phase accumulated in the travel of the
plane wave from the receiver reference point to the individual sensor. For muodal
beamforming, the dircction of travel is restricted to the horizontal plane. but the
size of the mode shape at each sensor depth iz included in addition to the phase

accumulation due to travel.

The relative performance of the each of the four variants proposed for madal
beamforming has been investigated for the case of the FRAM IV vertical array
when deployed in the sound channel described in Chapter 4. The single beam least
squares beamformer, which is the equivalent of the conventional beamformer. has
been shown to exkibit inadequate modal resolation, being able to resolve only a
single mode at 15 {1z, and no more than & modes even at 71 Haz. At intermediate
frequencies. typical resolution is 3 modes at 30 Hz and 5 modes & 47 Hzo In all
cases, the number of modes that can be resolved is but a small pereentage of those
that might possibly provide significant contributions to the receive'l sound field,
The resolution has been shown to be limited by the length of the array rather than

by sensor spacing within the array aperture,

The single beam MLM beamformer can provide significantly better resolution
than the single beam least squares beamformer if the received sound field s
comprised of modes which sum incoherently. It has also been demonstrated
theoretically that the single beam variant of the MLM algorithm always exhibits

better performance than the multiple beam variant under these conditions. Thus,




the single beam MLM algorithm is the method of choice for accomplishing modal
decomposition with the FRAM IV vertical array if the modes at the receiver

combine incoherently,

The performance of the MLM algorithm has been shown to be very sensitive
to the assumption of mode incoherence. The single heam variant of the algorithun
operates only very poorly in the presence of coherently summed modes.  This
problem has been examined in detail, both theoretically and through simmlation: the
cause has been shown to be a violation of the assumed independence of signal and
noise. This violation is produced beeause one of the coherent modes is implicithy
classified as the signal and the others as noise in the single heam MLM variant, It
has been shown that this problem can be triggered by the presence of even small
amounts of a second coherent mode, and is most severe for the case of orthogonal
steering vectors, as is the case for modes well resolved by a vertical array. The
effect. has been demonstrated to be less significant. when the steering vectors of the
coherently summing modes are approximately parallel to each other. such as ocenrs
when considering high resolution horizontal array beamforming. Finally. it ean be
demonstrated that, in the presence of coherent modes, the single heam MLM
beamformer still provides higher resolution than the single beam least squares
beamformer when applied to the horizontal array. In this case, the peak locations

normally remain accurate: the resultant output levels are not reliable, though.

The multiple beam variant of the MLM algorithm is theoretically eapable of
climinating the difficulties encountered by the single beam in processing a field
consisting of coherent modes.  This is accomplished only at the expense of some
reduction in performance, and is implemented by simultancously including in the

multiple beam MLN beamformer all modes with significant coherent contributions.

However, a practical investigation indicates that the FRAM IV vertieal array lacks
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the fundamental resolution necessary to guarantee the numerical stability of such an
approach. Thus, neither variant of the MLM algorithm is considered 1o be adequate
for the reduction of FRAM IV vertical array data, since (as is shown in Chapter 7

the modal contributions turn out to be highly coherent.

The multiple beam least. squares algorithm has been shown to be an adequate
high resolution alternative to the single heam least squares algorithm for vertical
array data, because it is insensitive to the issue of made coherence. and because it
provides the multiple mode resolution at lower frequencies that is lacking in the
single beam variant, The major issue involved in implementing any sueh algorithm
is the selection of the number of modes to model (or, equivalently. the number of
madal beams to estimate simultancously). Inclusion of too many modes that are
fundamentally unresc" * the array causes numerical stability problems in the
matrix inversions requi<a (0 implement the processing. A quantitative method for
selecting the number of modes to be include in the multiple beam least squares
beamformer is presented. This method is based on the relative singularity of the
steering matrix when different numbers of modes are included. Using the method,
which has been verified through simulation, Table 3-1 has been cowmpiled: it
indicates the number of modes that can be simultaneously resolved at dilferent
frequencies when the multiple beam least squares processor is applied to data taken
from the FEAM IV vertical array. The results of Table 5-1 indicate that multiple

modes ¢an be resolved for all frequencies of interest.
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Chapter 6
The Array Tilt Problem

The signal processing aspects of modal beamforming have been discussed in
the previous chapter. For the purposes of that discussion, the array has heen
assumed to be ideal in all respects. In particular, the locations of the sensors that
comprised the array have been assumed to be known exactly. In practice, such
sensor positions are rarely known presisely: this is certainly true for the FRAM IV
arrays, as is discussed in Sections 3.5 and 3.7. The purpose of the present chapteris
to investigate the sensitivity of the modal decompesition process to the types of

sensor position errors likely o be encountered in practice.

The chapter begins with the selection of the linear tilt model for the shape of
the FRAM IV vertical array. The model is very convenient, since only one
parameter, the effective array tilt angle, is needed to completely specily jt. vven
when the three-dimensional aspects of the problem are considered.  Such an
approach can be justified in two ways. First, it accounts for the majority of the
sensor offsets found in the notional shapes presented in Section 3.7, especially at
larger tilt. angles, where both the size and the effect of sensor position errors are
greatest. Second, the physics of the problem are consistent with the conjecturs thas
higher order array shape variations have less of an impact on the madal

decomposition process than does the linear tilt,

Next, the tilt problem is studied so that one can qualitatively understand its
effect on vertical array modal beamforming.  This study is supported by results
generated from syathetic data which depict grapl. ally the tilt angle sensitivity of

modal heamformers. The physical insight generated also leads to a simple methad
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for sstimating the accuracy of tilt angle measurements needed (or valid muulal
separation to be guaranteed, This method is then applied to the FRAM IV vertical

array and s.and channel, and the results are both reported and vompared with the

-—

synthetically generated outputs.

The discussior: just outlined contributes in three ways. First, it emphasizes -
the general importance of vertical array tilt in the modal decomposition problem.
Second, it provides at least a rudimentary method of estimating the quality of tilt
angle measurements that are needed. Finally, it proves that the array tilt problem
must. be addressed for successful application of modal beamforming to the FRAM IV
vertieal array data. However, no tilt angle measurements are directly available
from the experimental ‘data package. In light of this situation, one must then

attempt to recover estimates of the effective array tilt from the acoustic data.

The remainder of the chapter presemts a simple method for deducing the
effcetive array Glt from the acoustic data set.  This method involves the
minimization of the residual total square error aver a range of reasonable tilt angles,
The residual (olal square error is a measure of how well the sound pressure ek
observed at the various array sensors is matched by a pressure fickl reconstructed
from the complex mudal smplitude outputs of the beamformer. The aceuraey of
the method is investigated with synthetie dsm, and some conelusions are drawn

about the eouditions required o obtain reliable results,

8.1 A Simplified Model for the Shape of the Vertical Array

Two estinates of the true shape of the vertieal areay in the presen.e of
reasonably severe relative currents have been presented in Seetion 3.7, The
methods used to generate these estimates can be considered mathematieal models of

the vertieai array shape, Both of the madels are relatively erusde, even 1o the poin
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of being somewhat unrealistic. From a signal processing point of view, though, »till
further simplification is desirable, 30 that the number of parameters nteded to
defina the shape of the array can be kept to a minimum. In the remainder of this
thasis, the array is modeled as a simple straight line that makes some angle with the
true vertical. In terms of the signal processing. this is the simplest model possible,
since it requires unly one parameter, the effective array tilt angle. to completely

determine the model array shape.

The zelection of the simple linear tilt model for the vertical array shape can be
justified by examining how well it fits the actual shape of the array under different
eonditions.  Since no aciual array shape data is available, this is diffieult to do
“directly.  Instead. the comparison is made with the NRL array model on the
assumption that the model is at least a rcasonable reproduction of the general shape
of the array. The fit can be quantified by breaking the NRL result presented in
Figure 3-5 into polynomials involving increasing powers of = The natural basis sot
for such a decompaosition is the set of normalized Legendre polynomials, since they
are the orthugonal function set involving increasing powers in = The coefficient of
the first order term in the expansion represents the assumed tilt angle that the
array makes with the vertical, while those of higher terms indicate the relative
contributions that more complex curves make to the total array shape. The more
commonly used Taylor series expansion is misleading in this situation, sinev the
Taylor polynomials are not orthogonal. The coefficient of the [irzt order Taylor
term does nat reflect the Tell tilt of the array, since odd Tavlor polynomials of

" K 5 . 0. . . .
higher order (s 25, ete.) all contain additional implied array tilt.

Fram orthogonal function theory [20). the coefficient of the ™ term of te

serivs ean be computed as

-l
.= —/ M N S e (6]
g
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where </ is & normalized depth coordinate in the range from -1 to 1, heing related to

the unnormalized depth = and the total length of the array H by

2
o o | - s-=1. o
3 (") 1 (6.2)

The notation () is used to indicate the actual array offset as measured at the
equivalent unnormalized depth. P{:/) is the i'™ Legendre polynomial: the lowest
order functions of this set are provided in Table 6-I. In addition. the same theory
guarantees that
H -
I=5 [ P¥d=Y" o, (6.3)
- _l . o
=
so that the percentage contribution of any term to the full array shape can be

computed by dividing the square of the appropriute coefficient by /.

Table 6-1 provides the results of the Legendre polynomial decomposition for
the first few terms of the series. It is easy to see that the series can be reasonably
well approximated with as few as the first two terms. Since the zero order term
represents nothing more than a translation of the horizontal axis, it has no practical
cffect on the beamforming, and can be completely eliminated by proper redefinition
of the coordinate system. However, even if the zero order term is ignored. the first

order linear tilt term still accounts for about 0S¢ of the remaining array offset,

Thus, the conclusion is reached that the array shape displayed in Figure 3-5
can be adequately represented by an array that remains a straight line but which is
tilted at some angle to the vertical. Whether or not the array can normally be
represented by a linear tilt is more problematic. A quantitative discussion of this

point is clearly impossible, due to the laex of experimental array  shape

measurements.  However, iwo general arguments can be made in favor of such a
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Relative Contribution

Polvnomial Coefficient (m%/?) withay  without a,
Py) = /03 9.82 X 10° £0.02% .
P() =15z 4.62 X 10° 17.72Cc  82.68%
Pi#)=25(1.57%-05)  -1.85 X 10° 2.26% 11.32%
Py =\B5(252%-157) 335 x 10° - -

I=1.205 X 10°m®

Table 8-I: Results of Legendre Polynomial Analysis Results for
the NRL Model of the FRAM IV Vertical Array Shape

conclusion. First, the structural mechanics of the vertical array suggests that the
lowest order shape components should dominate. For the length and weight
involved (1000 m and roughly 2 tons), it is difficult to visualize a condition where
much more than a very few low order terms of the expansion contribute
significantly. This supposition agrees with the results presented in Table 6-1. where
anything beyond the parabolic term is obviously negligible. Second. it must be
realized that the accuracy of the linear tilt model can be expected to generally
increase at higher currents, where the array shape effects are Lirger and their
impact on the problem is more significant. As the array becomes strung out at
these currents, the proportion of the array shape provided by the tilt term increases,
Thus, the model is most accurate in the worst case condition, where it is needed
most. Finally, it is possible to argue that it is necessary to retain the second order

term for accuracy. but such a decision must be halanced amainst the increased
. [=]

complexity of the resulting model. In the present case, the parabolic term appears
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to be small enough that more is gained by dropping it than by retaining it.

The true array shape is a three-dimensional function, as shown in Figure 3-5,
However, it is only one projection of the full shape (that in the vertical plane of
sound propagation) that affccts the modal beamforming. For the purposes of the
Legendre polynomial analysis just conducted, this vertical plane was arbitrarily
assumed to be coincident with the vertical planc of current flow at the surface,
which will not generally be the case. In a more general situation, the linear tilt
model can be thought of as the first order Legendre polynomial fit. to the projection
of the array shape into the vertical plane of propagation. The tiit angie associated
with this linear tilt is then not a true array tilt, but only an effective one measured

in the dircction of propagation.

.2 The Sensitivity of Modal Beamforming to Array Tilt

Having demonstrated that the first order effect of sensor offsets in vertical
arrays is to provide an effective tilt to the array, the sensitivity of the modal
decomposition process to this tilt must next be considered.  Consider the simple
channel shown in Figure 6-1, which consists of a free surface at s =0, a hard
bottom at a depth of = = H, and a sound speed ¢, that is constant thronghout the
channel. For simplicity, assume an array of continuous aperture that extends to the
full depth of the channel, and a situation where only the i mode is present. For
such a case, the multiple beam least squares resuit of Chapter 5 reduces to the
modal equivalent of the conventional heamformer. The resulting processor may also
be interpreted as a traditional matched filter, but in a spatial sense,  Thus. to detect

the i mode. the output of the array at any depth should be weighted by the size of

the mode shape at that depth, which for this channel is
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o) = \/IZI sin iz \/_(c M3 g =i (6.4)

Here v, is the vertical wavenumber of the mode, given by

b= f—'—";l—/"')-’- (6.5)

The second expression in equation (6.4) provides another interpretation of

modal beamforming. The weighting of the array aperture by the made shape is
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equivalent to simultancously forming two plane wave beams, one at angle J; to the

horizontal and the other at angle -, where

e i/ o
3, = sin ! (2—;7‘:-)-) = cos ~! (c—‘:) . (6.6)

The outputs of these two beams are then subtracted and properly scaled to form the
modal amplitude estimate. In equation (6.6) ¢, is the horizontal phase speed

associated with the i'® mode. which is related to the vertical wavenumber by

©-CT"
C. = — — — . I N
' ) 22/,




-187-
This interpretation is not surprising, since the equivalence of each mode with a pair

of plane waves is well established for this particular channel.

Because the modal beam is no more than the sum of a pair of plane wave
beams for this case, the i'* modal beam can be expected to respond to energy
traveling in either the upward or downward direction at a grazing angle of .2
further, this is true whether or not the energy is really being carried by the i*h
mode. Now, consider the effect of imposing a linear tilt on the array, which is
illustrated in Figure 6-2. The tilt causes the plane wave beam pairs to be aimed
away from the directions in which the modal energy is actually arriving. In faet, 0
the array tilts too much, then one or both of the equivalent plane wave bheams ean
end up pointed in a direction where it detects the arriving energy of a neighboring
mode instead of the energy carried by its own mode. Since it is obvious that the
modal beamformer responds to this energy, one can readily anticipate severe
distortions in the modal decomposition if the effective array tilt angle becomes too

large.

It is of interest to consider the effect of higher order shape terms from a
similar viewpoint.  Whereas the linear tilt term tends to redirect the equivalemt
plane wave beams, the presence of higher order shape terms causes decreasing
amounts of mis-steering in the beam formation and increasing amounts of beam
defocusing.  Thus, the linear tilt approximation is probably better suited to the

array shape modeling problem than expected. since it retains the portion of the

actual array shape that most significantly affects modal decomposition.
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6.3 Examples of the Array Tilt Sensitivity Iin the Processing

To highlight the sensitivity of modal beamforming to the assumed tilt angle,
several synthetic data sets have been created and processed with the multiple beam
least squares algorithm described in Chapter 5. The synthesized sound fivlds
examined are similar to those used in the previous chapter, since each signal fiekl
has been gencrated by coherently summing contributions from the odd modes
between mode 1 and mode 15. Each mode has been assigned a unit amplitude and
a random initial phase. Unlike the synthetic data prezented in Chapter 5. though,
the signals analvzed here have been created with constant. unmodulated modal
amplitudes. The array has been assumed to be precisely vertical for the full length
of each synthetic signal.  The multiple beam least squares algorithm used to
accomplish the beamforming is identical in all respects to that emploved in e
previous chapter. The window length and processing interval selections are aba the

Name.

Figures 6-3 and 6-4 illustrate two different examples of the results for
syathetie data sets at 30 Hz, while Figure 6-5 provides a similar example at 47 Uz,
To develop these figures, the madal amplitudes for a single processing window of
data have been computed at a series of different assumed vertical array tilt angles,
The resultant madal amplitude outputs have then been plotted as a function of the
offective tilt angle assumed in generating them. As in Chapter 5, the vertical axis
represents the mode number to which the amplitude data applies. Since the nuxde
number axis really ranges over a diserete set, actual amplitnde data vecurs only at
the integer mode numbers, where the black horizontal lines have been drawn. The
contours display  the variation of amplitudes on the mode-tilt plane for one
particular window of data. Results are provided for all 5 of the modes resolvable by

the vertical array at 30 Hz and for the 7 modes that ean be distinguished av 47 .
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The horizontal axis indicates the effective tilt angle assumed in the beamforming.
Thus, the vertical column of data at 0° indicates the true distribution of energy in
the mode set (since the synthetic field is generated for a truly vertical array). On
the other hand, the column of data at 1° indicates the modal distribution generated
by the beamformer if 1° of mismatch ic present between the actual tilt and the tilt

assumed by the beamformer.

All three plots vividly illustrate the variation in medal beamformer ontputs
that can occur when even slightly different vertical array tilts are assumed.  Ax
expected, the 07 outputs accurately reflect the actual modal distribution present in
the synthetic field, It is easy to bserve the expeeted alternating arrangement of
deep nulls {at even modes) and strong neaks (at odd modes) at this tilt, Although
one is unlikely to encounter the full range of assumed tilt angles (£10 ) in practice,
it i$ not unreasonable o expect excursions of as mnch as £5 . The large variations
of the modal amplitude estimates even within thiz smaller range of tilis show that

knowledge of the actual tilt angle is necessary for valid modal decomposition.

The synthetic data sets used to generate Figures 6-3 and 64 dilfer in only one
respeet, that being the initial phase relationships assumed between the varions
mades making up the signal field. Both figures are included to demonstrate that
the puttern of peaks and nulls generated is highly dependent on these phase
relationships. A comparison between either of these figures and Figure 6-5 shows
that, as might be expected, the processing becomes more sensitive 1o tilt angle at
higher frequencies.  Amplitude estimates for higher modes also exhibit greater
sensitivity than those for lower modes at the same frequeney.  If one wishes to
assure reasonable aceuraey in first mode amplitude estimates, it appears that the

array tilt must be known to ronghly the nearest 1. Estimates at higher modes

require neh more preeise tilt data to he valid,
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6.4 The Array Tilt Accuracy Required for Valld Modal Estimates

Given the sensitivity of the vertical array processing to assumed arra,;' tilt,
estimation of the accuracy required in the tilt angle measurement to guarantee valid
modal decomposition becomes important. One simple approach to this problem is
outlined here. From Figure 8-2, it is obvious that, for a simple uniform channel. the
modal scparation is certainly invalid by the time the array has been titted [ar
chough to cause one of the pair of equivalent plane wave beams to point in the

direction of a neighboring mode’s arriving energy. Adopting a criterion for valid

results of one half of this tilt leads to the expression .
Loin feos =1 [ S0 A '
\maz =3 MIN; [(‘0» (z_:) - cos c—, . (8.%)

where the second hall of equation (6.8) has been used to evalnate each of the
grazing angles. The minimization must be conducted over all modes to be properly

estimated.

Equation (6.8) is strictly correct only for a hard bottom, constant sound speed
channel, where the equivalence of the mode to a pair of plane waves is exact,
Applying it to more general channels requires further justification. Typically, each
mode is equivalent to a full spectrum of plane waves across vertical wavenumber
space, rather than just the diserete pair considered here.  This spectrum can be
calculated by taking the Fourier transform in depth of the mode shape. However,
mode shapes often exhibit a sort of characteristic vertical wavenumber, ax ean
readily be observed by studyving Figures 4-6 and 4-7. In such a ease, the resulting
wavenumber spectrum can be expected to show a sharp  peak near this
characteristic value. It is not unreasonable to approximate such a speetrum by 2
pair of delta functions, which then completes the identification with an equivalent

plane wave pair.  Yang and Giellis [R1} provide several examples of modal speetra
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that confirm the presence of these strong wavenuraber peaks in the central Arctic

mode set.

There remains the issue converting the characteristic vertical wavenumber
value for each mode into an equivalent grazing angie. This is trivial for a channel
of uniform sound speed, since it is easy tG define a herizontal reference: any mode
propagating in exactly the horizontal direction must possess a horizontal phase
speed of ¢, The choice of a proper definition for the horizontal reference in a
channs| of arbitrary sound speed profile is much more subtle. Care in this matter is

important, since the form of equation (6.8) makes it sensitive to the choiee of e

The problem is cften dealt with by making a "relative® conversion: that is,
the difference in grazing angle between two modes is computed by arbitrarily
assigning the role of ¢y to the mode having the lower horizontal phase speed. A
simple numerical example is enough to demonstrate the flawed nature of such an
approach. Assume that the phase speed of lhe.first mode is 1450 m/sec at a given
frequency. while that of the second mode is 14ho m/see.  Also assume that the
reference phase speed associated with horizontal propagation is LHO m/see. Then
the actual difference between the equivalent grazing .ungles of the two mudes is
1.5, whereas a volue of 4.8 is given by the relative conversion method. While
this level of accuracy may be acceptable for problems to which the relative

conversion is typically applied, it is obviously inadequate for the present purposes,

A definition of ¢, (the horizontal phase speed associated with propagation at a
grazing angle of 0°) is needed that is general enough to be applicable 1o a channel
having an arbitrary sound speed profile.  Such a definition can be developed by
identifying horizontzl propagation with the mode having the smallest horizontal

phase speed. The mode possessing this property is always the *DC* made, ie., the

lowest order mode for the desired channel when both rigid surfuce and rigid
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Figure 8-6: Horizontal Phase Speed for the DC Mode versus Frequeney

bottom boundary conditions are assumed. It is named the DC mode here beeanse
the resulting mode shape is constant with depth for a channel of uniform sonnd
speed, and, thus, represents the DC component of the resultant Fonrier serivs.  Note
that this definition is consistent with the exact result derived above, since the phase
speed of the DC mode for a channel of uniform sound speed is exactly ) The
phase speed of this mode for the sound speed profile of Figure 41 is plotted versus

frequency in Figure 6-6,

Table 6:11 has been computed from equation (6.8) and Figure 6-6. It indicates
the accuracy required in the array tilt measurements if valid modal amplitude
estimates are to be assured for the modes resolvable in the FRAM IV vertieal array
data set. It can be seen that accuracies of better than 0.25  are often needed,

These results agree well with the tilt angle sensitivities observed in Figures 6-3




-196-

through 6-5, where significant changes in the modal amplitude estimates ¢can be

observed over tilt changes of much less than 1°. The higher tolerance of the first

mode estimate to tilt angle variations that was noted earlier appears to be due to

the greater separation in phase speed between it and the other modes; this causes an

equivalent increase in the tilt angle needed to alias the resultant amplitude estimate,

A similar phenomenon can begin to be seen for the second mode at higher

frequencies. Note that the accuracy requirements generally inerease at both higher

frequencies and higher mode numbers. This is in Keeping with the observations

made from Figures 6-3 through 6-5.

Frequeney
15.00 Hz

17.95 Hz
20.00 Hz
23.50 Hz
30.00 Hz
35.25 Hz
35.50 Hz

Frequeney
47.00 Lz

53.25 He
55.00 Hz

Frequeney
71.00 Hz

1 Mode
0.45°
0.50°
0.65°
0.90°
1.35°
1.60°
1.60°

1 Mode
1L.30°
L3O
1.0

1 Mode
1.60°

2+ Modes

0.10
0.35

0.30°
0.25°
0.20"
0.15°
0.15°

2 Modes

3+ Modes

0.35
0.50
0.55

2 Modes

0.10
0.10
0.10

3 Modes 44 Modes

0.90

0.20 0.07

Table 6-II: Tilt Angle Accuracy Requirements for the FRAM IV
Vertical Array

From Table 6-11, it can be scen that the tilt accuracies required 10 assure

proper modal decomposition of the received field are significantly smaller than the

range of tilt angles likely to be encountered in the ficld. ‘Thus, very aceurate array

tilt measurements must be made either direetly or indireetly if a validl modal

beamforming experiment is to be conducted.

The FRAM IV vertieal array tilt
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accuracy requirements are probably typical of those found elsewhere, while in other
situations somewhat larger ranges of tilt angle will be encountered. Therefore, it ix
reasonable (0 conclude that vertical array tilt monitoring must be considered as an

important integral element of any reliable modal decomposition scheme.

6.5 The EfYect of Tilt on Horizontal Arrays

The sensitivity of the vertical array to array (it is generated by a confluence
of factors; these factors tend to work in just the opposite fashion for horizontal
arrays, making them relatively insensitive to array tilt issues. The first order offect
of ocean currents on a vertical array is the generation of a tilt across the face of the
array. By comparison, the first order effect for a horizontal array is a uniform
offset. of sensors across .the array, which has no infiuence on array performance for
far ficld beamforming. Some variation of individual sensor offsets is expected, but
this is generally small when compared to the mean offset.  Such variations may
cause some degradation in horizontal array beamformer performance at higher
frequencies. where exact sensor position information is more critical.  Even the
fluctuations around the mean offset generate no real array tilt, since they tend to be
randomly distributed across the array. Finally, because a horizontal array s
essentially being operated at endfire when used for maodal decomposition, the
algorithm itself can be expected to be relatively insensitive to tilt.  However, it
should be realized that it is exactly this endfire operation that limits the modal
resolution of horizontal arrays in the first place. In general, then, array tilt does not

appear to be as significant an issue for the horizontal arrays as it is for vertical

Arrays,
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6.6 Recovery of Vertles! Array Tlits from the Acoustic Data

The conclusion that even small amounts of array tilt are important in the
modal decomposition problem has major consequences for vertical array design. In
a different way, it also is significant for the FRAM IV vertical array data to be
analyzed here. Since no field measurements of vertical array tilt were taken during
the experiment, one must devise a scheme to extract the effective array tilt from the
acoustic data if further progress is to be made. The present seetion presents such a
scheme for recovering the effective tilt angle. Such an approach is obviously not
ideal; its ability to provide even approximate results is intimately linked to the
underlying quality of the data set. In the present instance, the high signal to noise
ratio developed by the preprocessing (typi 'y 20 to 30 dB) and the exceptional
* stability of the received signals provide some hope that some reasonable tilt angle

estimates can be made.

To cstimate the effective array tilt from the acoustic data, the residual error
from the multiple beam least squares beamformer is evaluated as a function of the
tilt angle assumed in the beamforming process. Equation (5.7) may be rewritten as

YNORM(,) P* [[-E(\) E;i\l),g(\) E*(\) P

(6.9)

where the dependence on the assumed tilt angle \ has now been explicitly indieated.
Additionally, the error in equation (6.9) has been normalized by the total square
pressure present in the observed field, P P, so that it now represents a fractional
l . r r- ae \\" a\'()R.\[ HY .,' e a e - '
goodness of fit measurement. ien Q2 (1) is evaluated across the range of

physically reasonable tilt angles, a consistent global minimum can typically be

expected.  ‘The tilt angle that generates this minimum cun then be used for the

estimated tilt of the array,  The underlying assumption is that the beamformer is
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better able to match the observed sound pressure field when using the correct areay

tilt angle than when working with any incorrect tilt value.

It is important to review what the procedure just outlined accomplishes from a
processing standpoint. The multiple beam least squares modal beamformer
computes the set of complex modal amplitudes that produce the best fit to the
observed pressure field for one assumed array tilt. The residual error is a measure
of how well this "best fit® actually matches the observed field. Note that the
residual error is always smaller than the total square error generated by any other
set. of modal amplitudes at the assumed tilt angle. If the data is then processed
using the tilt angle which minimizes the residual error, the resulting set of
amplitudes is guaranteed to produce a better match to the observed fielkd than any
other possible combination of modal amplitudes and array tilts, 'I‘In!s. the
minimized error philosophy, which forms the basis for the original beamforming

algorithm, has been extended further to cover the array tilt angle.

Synthetic data has once more been employed to study the performance of the
scheme.  One such result is displayed in Figure 6-7. Here the normalized residual
error has been plotted as a function of assumed tilt angle and time. The normalized
error has been plotted on a dB scale, so that the -10 dB line marks a 90 [it and
the -20 dB line indicates a 99<¢ fit, ete. As a practical matter. the normalized
residual error has been computed as an average value over a two minute window of
data, rather than instantaneously (a5 indicated in equation (6.9)). The computation
has been made once each minute, giving a 507 overlap factor. This windowing
procedure is identieal to that carried out for synthetic data throughout the thesis.

The synthetic data set from which Figure 6-7 has been ereated is similar in
most ways to those presented previously., For the present figure. modes 1. 3, 3, and

7 of the 47 Hz mode set have been coherently summed to generate the signal field:
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cach mode has been assigned an amplitude of unity. Unlike the synthetic data sets
used in Chapter 5, the modal amplitudes shown here are constant and unmodulated
over time. Rather, in Figure 6-7 it is the effective array tilt that has been
sinusoidally varied over time. This variation occurs over a range from vertical to
5% and back, and has an oscillation period of 3 hours {10,800 sec). Figure 6-7,

therefore, covers the first half cycle of this tilt oscillation.

Figure 6-7 demonstrates the ability of the tilt angle estimation scheme
described above to properly track vertical array tilt over time. The minimum
errors observed are in the -15 dB range, representing a 97C¢ fit of the synthetically
generated data.  Note that the minimum error tracks the actual tilt of the array

quite well as it swings away from the vertical and then back.

. Figure 6-7 is a highly idealized situation, for two reasons: a tilted line array
possessing no higher order shape components has been assumed in generating the
synthetic field; and only the seven modes included in the beamformer have been
injected into the signal. \While the effect of the presence of higher order shape
components on the array tilt estimation process i3 difficult to quantify, the
fundamental issue underlving it remains the adequacy of the linear tiit model for
array shape, which has already been discussed at some length.  Figure 6-8
demonstrates the effect of having significant amounts of signal energy carried by
modes not. inclided in the beamformer.  Here, both the syuthetic data and the
processing used are identical to those of Figure 6-7, with the lone exception that
modes 9, 11, 13, and 15 have additionally been inserted into the signal field at unit
amplitude.  The presence of this extra energy in modes excluded from the
beamformer makes it more difficult for the algorithm to attain a good mateh with

the observed field at any tilt angle. which is reflected by the inereased minimum

residual error (R0 in Figure 6-8 versus 975 in Figure 6-7). It also generates a bias
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of about 2° in the resulting till angle estimate. While both the amount and
direction of the bias are difficult to predict, its cause is not hard to explain. Even
though some energy in the included modes is not accounted for, the hiased tilt angle
generates less residual error than the true tilt because even more of the energy in
the excluded modes is allowed to leak into the result. The amount of the bias is
directly reiated to the relative proportions of signal energy present in the modes
included and excluded by the beamformer. The actual minimum error lovel
achieved can be used as a measure of this effect. Processing that results in
minimum normalized errors of much above -10 dB should be regarded with

suspicion.

6.7 Summary

The least squares modal beamforming algorithm developed in Chapter 5 has
been shown to be quite sensitive to sensor position errors. particularly when it is
applied to vertical arrays. The effective linear tilt of the array away from true
vertical appears to be the component of array shape that contributes most
signifieantly to this sensitivity.  Two reasons account. account. for the effect. The
shapes of long, heavy vertical arrays (such as the one deployed during the FRAM IV
Arctic Experiment) are composed, in a mean square sense, primarily of low order
components, such as constant translations, linear tilts, and parabolic shapes. The
zerc order constant translation term has no effect on the beamforming problem, and
may be completely removed by proper redefinition of the coordinate system. The
first order linear tilt term can be expected to account for the majority of the total
sensor position error, especially in strong currents where the sensor offsets are

greatest, To demonstrate this coneept, a model-based notional shape generated for

the FRAM IV vertical array has been analyzed using Legendre polvnomials. o,
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. the physics of the problem support the argument that the impact of the linear tilt
component of the array shape on the modal decomposition process is more
significant than that of higher shape components. This is because the array tih
causes each modal beam to effectively ®point away® from the vertical directiony in
which that mode's energy arrives. By contrast, the primary effect of higher order

shape components is only to defocus the modal beams.

The above considerations have lead to the selection of a simple tilted line
model for the true array shape. Such a model is also attractive because it allows
the assumed shape to be completely specified with a single parameter, the effective
array tilt angle. This simplicity holds even when the three-dimensional nature of

the problem is considered.

. The sensitivity of vertical array modal beamforming to array tilt has been
. studied both theoretically and through the use of synthetic data. A simple method
has been developed to estimate the accuracy to which one must know the tilt angle

if valid modal decompositions are to be assured. This method implicitly assumes

tha a rough equivalence exists between each mode and a corresponding pair of

plane waves.  The applicability of the resulting accuracy estimates is dependent

upon the degree to which this equivalence holds in practice. The equivalence may

be tested qualitatively by examining the Fourier transform of each mode shape: il a

single strong peak exists over some narrow range of vertical wavenumbers, then a
reasonable equivalence exists. This appears to be the case for the central Aretic

mode set of Chapter 4. Processing results from syathetic data have been utilized 1o

actually demonstrate the sensitivity of the processing to array tilt,

Application of this tilt accuracy estimation method to the FRAM IV vertieal

array shows that the array tilt must be known to about £0.25  to guarantee

‘ meaningful modal separation.  These results are in good agreement with tilt angle
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sensitivities demonstrated by synthetic data. They also correspond well to the tilt
sensitivities observed in real data taken from the vertical array, which are presented

in Section 7.3.

Since no field measurements of vertical array tilt were made during the
FRAM IV Experiment, a scheme has been developed to recover tilt valies from the
acoustic data itselfl. This scheme involves evaluation of the residual beamforming
error as a function of the tilt angle assumed in the beamforming computations. The
residual error is a measure of the difference between the the sound pressure field
observed at the sensors and the field synthetically generated from the complex
amplitude outputs of the modal beamformer. As such, it indieates how well the
outputs of the heamformer match the vbserved pressure field. Thus. the tilt that
generates the smallest residual error is the one which best fits the observations, and

may be assumed to be the actual vertical array tilt angle.

Through the use of synthetic data, the tilt angle estimation scheme has been
shown to work well when applied to high SNR signals. In making this
demonstration, an ideal linear shape has been assumed for the areay. The low SNR
situation has not been studied. but it is expected that performance wounld be
severely degraded under these conditions. The relative amount of signal energy
carricd by modes not included in the multiple beam least squares algorithm has
been shown to affect the accuracy of the estimate. When the contribution of these
mades is negligible, the method can be expected to provide accurate estimates: as
the contribution becomes more important, a bias is injected into the valim:.nv.
leading to progressively poorer performance.  When significant signal energy i
resident in modes not included in the beamformer, higher values of the normalized
residual error are also generated, even at the minimum.  This is becanse the

beamformer has increasing difficulty in matching the total field with just the modes
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available to it. Thus, the value of the normalized residual error at the minimum
can be used as a guide to the accuracy of the tilt angle estimate. Fits of much less
than 90¢ (greater than -10 dB normalized error) should be considered to be
suspect.
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Chapter 7

Data Presentation and Analysis

The purpose of this chapter is to present the results obtained from applying
the processing techniques outlined in Chaplers 5 and 6 to the data set deseribed in
Chapter 3, based on the modal structure of Chapter 4. In %0 doing. a number of
different hypotheses can be tested.  First, the validity of the assumed modal
structure can be established. Second, the results of processing the vertical array
data can be compared to those generated from the more traditional horizontal array
processing. providing a quaiitative measure of the vertical array  processing
performance. These efforts generate conflidence in the computed mode propertics
and the processing perforiance, after which a full analysis of the implications of

both the horizontal and vertical array results can be undertaken.

The processing output includes three different types of useful data.  The
absolute mode amplitudes are directly available.  Their relative sizex provide
immediate insight into the nature of low frequencey Arctie propagation. and they ean
be used to compute observed valuez of the modal attenuation cocfficients,
Comparison of these coefficients with predicted values sheds light on the channel
parameters that most influenee Arctic sound transmission. The time series of the
amplitudes also provide some general indications of the temporal stability of the

central Arctic channel.

Measurements of mode coherence provide data of a different type, and
indieate whether the signal’s component modes are phase-random or phase-locked

with respect to each other.  This data ean be used to test the uncorrelated multi-

path assumption that is widely used in theo~atical developients,

*
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Finally, if the different modes do maintain a deterministic phase relationship,
then it is meaningful to measure the relative phases between various pairs of modes,
These relative phase values provide a measure of the range dependence of the
channel, since they represent an integration of horizontal phase speed fluctuations
that the modes have encountered during propagation (see equation (2.30)). Thus. if
the measured values disagree with values predicted from the phase speed data of
Figure -10, then the channel must be assutned to show non-negligible variations in
range; il the agreement is good, the simpler range independent channel medel will

suffice.

This chapter is organized into five major sections, some contzining maltiple
subsections. Following some preliminary comments, the horizontal array data
processing results are presented and summarized. The section is divided into four
subscctions; one deals with azimuthal beamforming and 'anolher with vertieal
steering.  The third summarizes the results across the full data set. In the last
subsection, the predicted first mode horizontal phase speeds are compared with
those observed from the horizontal areay data, so that the accuracy of the medal

characteristics computed in Chapter -1 can be assessed.

A similar section summarizes the results for the vertieal array,  ‘I'wo
subsections disenss the array tilt problem and the tilt angle estimates made with the
procedure discussed in Section 6.6.  ‘The third presents some typical modal
amplitude levels versus time, while the fourth discusses observations of possible
array shape changes over time that can be observed in the data.

Following this are three sections dealing with data analysis. The first of these
sections investigates the modal amplitude data.  One subsection compares the

horizontal and vertical array results.  The second analyzes the observed muodal

attenuation coelflicient: versus theoretical predictions. and the last subseetion
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contrasts both sets of results with some shot data available for the xame channel.
The second section presents and discusses the mode coherence estimates made. The
final secction presents the relative phases observed between various modes. .\

summary of major points completes the chapter.

7.1 General Comments

Before commencing the actual presentation of processing results, some general
comments concerning the formats uszed and the processing parameters seleeted are
in order. Firat, all amplitude levels shown in this chapter are displayed on a decibol
seale referenced to units of absolute pressure (1 pP’a rms); conversion from the
voltage levels measured has been done using the hydrophone sensitivitiex quoted in
Figure 3-6 and Table 3-lll. A logarithmic scale is also used for displaving residual
error data; the values shown are 10 times the logarithm of the normalized residual
error, as defined in Section 6.6. An error level of -10 dB represents a 1067 error, or,
cquivalently, 3 90 fit to the observed data, while a level of =20 dB represents a
007 fit.  Phase data are presented on a linear scale from -i20 to 180 : phase
wrap is often observed, as only the principal value of the phase is displayed.
Coherence measurements are presented in normalized form, so that the values range

from 0.0 to 1.0.

On all plots, amplitudes or residual error values are marked with DB. Mode
numbers (such as mode 1, mode 2, ete.) are denoted by MD, while horizonta! phase
speeds (in m/sec) are indicated by PV. DG is used for azimuth angles on plots of
horizontal array data and for array tilt angles on plots of vertical array data, Al
azimuth angles are measured with respect to the convention discussed in Seetion
3.3: the tilt angles displayed are effective angles measured in the vertieal plane of

propagation (see Seetion 6.1).  Where axes are indexed by mode number. it is
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important to remember that data only exists at the integer values: any markings
between these discrete points, such as connecting lines on one-dimensional plots or
contours on two-dimensional plots, have no physical significance and are included
only to help in judging relative trends by eye. Where contoured data indexed by
mode have been presented, overlying black lines have been added to the plot to
emphasize its discrete nature. All levels plotted versus mode number are modal
amplitudes. For the horizontal array, levels plotted versus horizontal phase speed
are plane wave amplitudes, and differ from modal amplimdg measurements by a
factor equal to the size of the mode shape at the 91 m depth of the array. The

necessary conversion factors can be found in Figure 4-8,

Processing windows of 28.8 sec (18 points, providing a time-bhandwidth
product of 0.7) have been used for estimating the sensor cross-coherence matrices
for horizontal array data. One set of beams is compuu:d every 15 seconds,
providing roughly a 50 overlap factor. With some noted exceptions, vertical array
data have been processed in 120 sec windows (75 points, giving a time-bandwidth
product of 3.0). with a computation interval of 60 sec, again giving a 507 overlap.
The very stable and coherent nature of the Arctic sound channel makes the
difference negligible.  No windowing functions (such as Bartett or Hanning

windows) have been employed in the processing.

The 17.75 and 47 Hz frequency data from both the horizontal and vertieal
arrays have been chosen for display throughout the chapter, since they are
reasonably representative of the results at other frequencies. This is done to allow
direct comparison of the various processing results while limiting the chapter to an
acceptable length.  Results from other frequencies are presented when  they
demonstrate unique  features of interest.  The most  important  results are

summarized by tables or plots that span the Tull range of available frequencies.
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7.3 Presentation of the Horliontal Array Processing Results

The data taken from the horizontal array have been processed using both the
single beam MLM beamformer and the conventional (single beam least squares)
beamformer. In general, the MLM algorithm provides much higher resolution than
the conventional approach, but does not produce reliable quantitative
measurements, because of the presence of coherent interference.  Quantitative
amplitude estimates of observed MLM peaks have been made by reprocessing the
data using the conventional beamformer. This technique works best when o strong
single peak is present, and is considerably less reliable when elosely spaced multiple

peaks of roughly equal height are present. .

7.3.1 Azimuthal Beamforming

Figure 7-1 displays the output of the single beam MLM processor versus time
for the 27 Hz tone from the horizontal array data set. For an assumed sound sped
of 1450 m/sce. the beamformer successively scans through 360 beams spaced |
apart in horizontal azimuth angle. Note that although 360 heam outputs are heing
evaluated at cach time step, every beam is stiil being computed individually: a
multiple beam algorithm would compute a number of beams all with a single set of

matrix operations,

For the azimuthal beamforming done here, the MLM processor is preferable to
the conventional beamformer for two reasons: it provides much higher resolution:
and it does a significantly better job of suppressing side lobes.  Quantitative level
measurcnients are not an issue here.  In Figure 7-1. the tonal signal is readily
apparent at an azimuth angle of 864 . A low level sidelobe that is down about by
about & dB ix visible at 270 . This is a back lobe generated by the north-south leg

of the array. which is essentially broadside to the incoming signal.
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By processing the data with beams spaced 0.1° apart.‘one can resolve the
source azimuth angle to about £0.1°, an accuracy not achievable wsing a
conventional beamformer. For comparison, the navigation data provide an azinmth
angle estimate of 86.1° (see Table 3-I). The difference is well within the limits of
accuracy of the array rotation measurements, which were made daily from the sun,

Similar agreement is obtained for other horizontal array tones.

With one exception, the tone is extremely stable over its full thirty minnte
duration. That exception is the lade that can be scen at the 420 see mark. “The
fade appears (o be caused by an instanancous shift in the phase of the recvived
signal, which in turn causes the signal frequency to walk out of the filter passband
for x; short. time. In many respects, it is similar to the fade observed by
Mikhalevsky [57]. Neither the azimuthal beamforming outputs nor the vertical
steering results (which are shown in Figure 7-2) display any noticeable difference
between the spatial structure before and after the event. This observation argues
against the assumption that the fade represents a shift in transmission path
structure; some type of interruption of the source seems more likely. Backgronnd
noise variations can be seen to occur in the absence of the signal and during the

fade. These are processing artifacts caused by variations in the amount of white

noise used to stabilize the cross-coherence matrix estimate.

7.2.2 Vertical Beamforming

Figure 7-2 shows the output of the single beam MLN processor versus time for
the 27 Hz tone. Unlike Figure 7-1, however, the beamformer now scans in the
vertical at the previously determined signal azimuth,  This is accomplished by

stepping the beam’s assumed horizontal phase speed from 1100 m/see to 1600 m/see

in 1 m/see increments, with the higher phase speeds corresponding 1o larger
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cquivalent grazing angles in the beams formed. The signal appears to be composed
almost entirely of first mode propagation arriving at about 1460 m/scc. Such a
result is expected, given the analysis of Section 4.5. If the attenuation of the
various modes is assumed to be equal, the received level of the first mode at 01 m

should dominate its neighbors by 27 dB (twice the value plotted in Figure 4-9).

Figure 7-3 shows the same 27 Hz data processed in the vertical at the ~ignal
azimuth, but now using the conventional beamformer. By comparing this figure
with Figure 7-2, one can obtain a feel for the resolution gains possible with the
MLM algorithm when it is applied in a carefully controlled fashion. Figure 7-3 is
useful for measuring the the first made’s average received signal level (about 91 d13),
and its fluctuation range (which appears to be no more than'1 dB). The complete
saturation of the heamformer ourput by the first mode arrival makes estimates of
higher mode levels impossible.

In Figures 7-4 and 7-5, the output of the single beam MLM processor is again
presented versus time. Here the 17.75 Hz tone recorded on the horizontal array has
been processed, and the beamformer has been steered in the vertical at the
appropriate azimuth angle. The plots indieate some of the practical diffienlties
involved in properly assessing channel stability.  Figure 7-4 was generated first, by
including all 24 hydrophones available from the horizontal array in  the
beamforming. In an effort to assess the nature of the fluctuation seen about half
way into the signal. the preprocessed time series data were carefully reviewed on a
sensor by sensor basis.  Three different sensors (not adjacent to one another) were
found to exhibit abnormally high signal levels for short periods near the time of the
disturbance, and have been climinated as inputs to the beamformer in the resulis
displayed in Figure 7-5. The previous fluctuation has now been completely

climinated,  ‘The cause of the fluctuations on the three sensors is not understood.,

¢
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However, the signal level variations point more to a mechanical or electrical
phenomenon than an acoustic cause. Such variations have also been observed in

other data taken from the horizontal array.

The results of Figure 7-5 are similar to those obtained at 27 Hi, and once
again show dominant first mode propagation. This is in qualitative agreement with
the preliminary analysis done in Section 3.12 for the 17.75 Hz tone recorded on the

vertical array. The widening of the first moade peak in Figure 7-3 compared with

Figure 7-2 is attributed to the loss of array directionality at the lower frequeney,
£ |

The final signal displayed from the horizontal array data set is the 47 Hz 1one
shown in Figure 7-6. This figure has again been generated from the ontpat of the
MLM beamformer when steered in phase speed at the signal azimuth, Note the
marked lack of a strong first mode arrival, which should appear at a phase speed of
about 1449 m/sec. Instead, the most intenze arrival occurs near LIRO m/see. and
can be associated with the deepest diving RSR rays of the TRISTEN/FRANM
channel (see Figure 4-12). Even this arrival is only marginally stronger than those
seen at other phase speeds, though. The received levels appear to indicate a rongh
cquipartition of energy in the various modes; however, the array lacks sulficient
resolution in the vertical to make a definitive statement about the distribution of
energy in the higher modes. In any case, the strong fiest mode arrival seen at lower

frequencies has now disappeared.

This result agrees closely with the initial analysiz of the 47 Hz tone from the
verlical array done in Section 3.12, and is quite remarkable when one considers that
A7 Hz lies almost at the peak of the relative advantage curve shown in Figure -9,
The theory predicts that the fiest mode should dominate its neighbors by alimost 60
dB if the attenuation is constant across all modes, which is in direet apposition to

the analysis completed both here and in Section 3,12, where it is coneluded that the
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variations of the reccived signal with depth can only be explained by the presenes of
a number of coherently interfering modes. The 53.25 Hz tone from the horizontal

array data set indicates similar low levels for the first mode.

7.2.3 Summary »f the Horisontal Array Processing Results

Several important general observations can be made from the proesed
horizontal array data.  An extremely stable channel kas been observed at ald
frequencies in the data set below 70 Hz. Fluetuaticns in beamformer ontpats aver
periods as long as 30 minutes rarely exceed 1 dB. The data appear tu be separable
into {wo or, possibly. three regimes. The data below about 30 Hz show the
expected dominant first mode propagation.  Despite the tremendons relative
advantage possessed by first mode's coupling to both the source and the horizontal
array, the data above 40 Hz show only very weak first mode propagation. In this
frequency regime, the deep RSR rays of the channel appear to contribute masginally
more to the total propagation than does any other path. While a‘slmng first mende
arrival is also seen in the region between 30 and 40 Hz, it & perhaps nob as
dominant as might be expected from the results of Section 4.5. This frequency
region appears to be a transition zone between the other two propagation regimes.
The primary source of this conclusion is the data from 35.25 Hz signal. which has

not been displayed here,

The vertical resolution of the horizontal array is inadequate to allow
separation of the individuval modes, even when the higher resolation MLM algorithn
is cmployed. At frequencies below 40 Hz, good quantitative estimates of the
received level of the first mode can be made becanse of its relative strength
compared to other modal arrivals: this same dominance prohibits estimates for

higher modes at these frequencivs, At frequencies above 10 1z, all mude level




measurements are of questionable accuracy becauze of the lack of a dominant

propagation path.

The result ac 70 Hz is a special case.  While an investigation of the complex
iime series output from the preprocessor shows a signal of reasonable strength to be
present, neither the MLM nor the least squares beamformers produce aceeptable
outputs. The inability to beamform this data effectively is attributed to the sensor

displacement problem discussed in Section 3.7.

7.2.4 Verification of the Modal Structure

The high resolution of the single beam MLM beamformer allows experimental
observations of the first. mode horizontal phase speed to be made for signal
frequencies below 40 Hz. These measurements can then be used to verify the mosdal
structure derived in. Chapter 1. Figure 7-7 summarizes this data. Here, both the
computed and the observed first mode phase speeds are plotied as a function of
frequency. The error bars that are plotted with the experimentally determined
values indicate the approximate width of the first mode peak seen in the MLM
processing ontput,  With the exception of the 27 Hz result, the agreement hetween
prediction and observation is more than adequate.  The 27 Hz data point is
obviously out of line with both the computed results and the other experimental
data, but the cause of this disagreement is not understood.  Since the phase specds
are much more sensitive to environmental variations than the mode shapes, one can
conclude from Figure 7-7 that the results presented in Chapter o adegnately

deseribe the actual modal structure at the reeciving arrays,
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7.3 Presentaiion of the Vertical Array Processing Results

In keeping with the discussion of Chapter 5, the data taken from the vertical
array have been processed using a multiple beam least squares beamforming
algorithm. Beeause this beamformer is a linear processor. no bias issues oceur. and
the output levels are quantitatively accurate. O the two most eritieal aspeets of
this processing, the first, which is the number of modes that ean be included in the

beamforn, . at any particular frequeney., has been fully resolved in Seetion 5.10 {ve
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Table 5-1). The other is the estimation of an effective array tilt angle for each of
the different signals recorded on the vertical array, the practical details of which are

discussed at some length here.

Three different forms of output have been generated for each signal in the
vertical array data set. One is a plot of the various modal amplitude estimates
versus time for any assumed tilt angle. The second is a plot of the modal amplitude
estimates at one particular time versus a range of assumed tilt angles. These 1wo
outputs can be thought of as heing orthogonal cross-sections of a three-dimensional
amplitude function, the axes representing time, mode number, and array tilt, This
is illustrated in Figure 7-8. The third orthogonal cross-seetion would typically he a
plot of the amplitude of one particular mode versus both time and array tilt.
Instead, a somewhat more useful output is presented here to convey information in
the third dimension. That output is the beamformer's residual error versus time
and assumed tilt angle. This parameter is more appropriate hecanse it may be
considered to represent a projection or an integration of the amplitude data from all
the modes into a single value which can then be plotted on the time-tilt surface, It
is this integration effect across all the mcxies included in the heamformer that allows
the residual error plot to provide direct information concerning the tilt of the array

versus time,

7.3.1 The Sensitivity of Vertical Array Data to Array Tilt

The sensitivity of the modal decomposition process to vertieal array tilt has
been demonstrated theoretically and by simulation in Seetions 6.2 and 6.3, Similar
sensitivity is experienced when dealing with actual data, as seen in Figures 7-9 and

7-10. Figure 7-9 shows a plet of the modal amplitude outputs from the multiple

beanm: least squares beamformer plotted versus assumed array tlts between <10 and
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10°. These results are computed from one particular 120 see window of data
centered on the 18,710 sec mark in the signal time series (the amplitude and phase
time serics of this signal are displayed for the different. vertical array hydrophones
in Figures 3-11 and 3-12). The estimated modal amplitude levels for all three
resolvable modes are included on the plot. Even over just the range from -5 to 5

(the most likely region for the actual effective tilt angle), significant variations in
the modal amplitude estimates can be found. These variations are as much as 1 dB

for mode 1 and 10 dB for mode 3.

Figure 7-10 shows similar results for the 47 Hz tone from the vertieal array
data set; here, a total of seven modes can he resolved. The 2 minute window of
data used for this figure is centered on the 1760 see point of the signal time series
(the time series for this signal can be found in _Figures 3-9 and 3-10). The problem
of tilt angle sensitivity obviously inercases at h;ghcr frequencies; at any particular
frequency, the estimates of higher order mode amplitudes appear to vary more with
array tilt than do those of lower modes. Note the deep nulls displayved by some of
the modes at selected tilt angles; variations in amplitude of more than 15 dB can he
seen over tilt variations of just 1 in the 47 Hz result, for example. It is apparent
that if one wishes to obtain accurate measurements of the various maodal
amplitudes, then estimates of the array Glt accurate to about £0.25  must be
available. At lower frequencies and lower mode numbers, this accuracy requirement
may be relaxed somewhat. It is also important to observe that the sensitivity of
amplitude measurements to assumed array tilt errors is quite dependent on hoth the

mode being considered and the actual tilt value; a 0.1  change in array tilt is much

more significant for some mode number/tilt angle combinations than for others.

Figures 7-9 and 7-10 do provide qualitative information about the various

modal amplitudes, even without determining the actual array tilt. This information
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can be extracted through the gross averaging of results over all possible array tilts.,
The 17.75 Hz results indicate a strong first mode arrival relative to the second and
third mode amplitudes; this is entirely consistent with previous conclusions for data
at this frequency made in Sections 3.12 and 7.2. Similarly, the 47 Hz ontpuis of
Figure 7-10 are in agrecment with previous observations of a very low level
amplitude for the first mode. This consistency generates confidence in bath the

operation of the beamformer and the validity of the observations.

7.3.2 Determination of Vertical Array Tilt Angles

Having demonstrated the sensitivity of the experimental results to the tilt of
the vertical array, the next major step in processing the data is to make safficiently
accurate estimates of the array tilt at various times. Il in situ measurements of
both the magnitude of the tilt angle and its direction in azimuth were availahle,
then they could be employed to resolve the issue directly.  Since no such
measurements are available for the FRAM IV Experiment, the alternative procedure
outlined in Section 6.6 is employed here to make an estimate of the array tilt for
each signal in the vertical array data set.  This procedure involves minimization of
the beamformer’s residual error over the range of physically reasonable array tilis,
Recall that the multiple beam least squares mudal beamformer computes the full set
of complex modal amplitudes which best fit the observed sound pressure field, given
one assumed effective tilt angle. The normalized residual error is the performance
measure for this fit (i.e., a measure of how good the fit really is). Even though the
residual crror is a scalar value, it should be remembered that its ealeulation is
affected by the number of modes included in the multiple beam algorithm. By
selecting the assumed tilt angle to minimize the residual error, the outputs
generated by the beamformer then form the set of amplitudes that best fit the

observed field for any possible array tilt,




e ~ A L - B - B L.
[ [ o [=] Q Q Q Q ~ " L] (%) LR ] N [ ] [ (% ] Q o o
m & A 0O 6 6 0 6 & &
S MM ieenma2I 0230 wecreag
P T S S U G R Sy S S S SR R S S g
ok e oM M W M ¥ WX XX X X M X X O™ O
[ L] 10.00 os sTARY -1¢ ]
L | £ | po | fe ;1  pe ) P | My e 6N 8, v d

17000 00

'II‘

1313 ' 00 0¢ SPAN 20 00 oG CHAN
CONT 1 00 o8 NAK e 00 o8 MIN
MODAL BOAW (RUER RESIOUAL FRROR AT 17 70 w2 13 MCGFT)

Figure 7-11: Residual Error of Multiple Beam Least Squares Modal

=20 Q0 -]

Beamformer versus Array Tilt for 17.75 Hz Tone

(Vertical Array with 3 Modes Ineluded)

T
3 Id 10659

H
e




-231-

I T S N T - B - T~ B > ]
~ e =3 I S S -
‘wnggg'%}m: ssueaooggg
I Y ]
P e A S -
i H 1 3 ¥ ) [} * ] ] 1} H 1  { i ] [ ] ‘
w4 W M X » & W ¥ X X & A X ¥ X X M N X
(2] 10 08 ] steny 600 08 8§
L L fo o 4 X B 29 20, pd oy rt oy X o
¥
| 2
-

¥
L1y 260 0O

.
P e |

e Freel Fael Taes | XA 1]
[T W 0¢ STARY =10 00 [
' Q0 oc PAN 20 30 1A CHan H
LN +1] vAr PG ] og Vin -2 e ce
A e A RYER R T A mh o 4 [T [T N

Figure 7-12: Residual Error of Multiple Beam Least Squares Modal
Beamformer versus Array Tilt for 47.00 Hz Tone
(Vertical Array with 7 Modes Included)




-232.

Indications exist that the array may not necessarily be completely stationary
over periods of Jonger than about twenty minutes; the discussions in Sectionz 3.12
and 7.3.4 are germane. For the purposes of determining array tilt, however, any
possible dynamic shifts in array shape over the signal's duration have been ignorad,
30 that one average value of the array tilt can be computed for the full length of
each signal. This is done primarily lor ease in implementing the soltware necessary
to perform the processing. A secondary consideration is that the rilt angle
estimation scheme appears to lack the resolution necessary 1o acenrately track much

more than the largest variatio.,

Figure 7-11 shows a | » normalized residual ercor of the multiple beam
least synares heamformer on nestilt surface for the 17,75 Hz data. Here, as in
Figure 7-0. the three mades o Nle by the array at 17.75 Hz have been included

in the multiple beam algorithm. The error valuez have heen computed at every
0.1° of array tilt in the range from -10° to 10", The array tilt generating the
minitnam residual error is <0.15° . Data taken when the signal was off, as well as
the data near the 17,400 see point {(when the airgun was aetive), have been exeluded
to avoid bissing the time average. The tilt that provides the minimum error i
reasonably consistent over the length of the signal, and errors as small as =15 dB
(fitting 074 of the data) are achieved. The broad nature of the minimum presents
some diffienlty, While a determination of the minimum point can be made to any
desired aceuraey, some guestion exists as to the physical relevance of that accuraey,
From the nature of Figure 7-11, it appears that the minimum tilt angle is probably
known to better than 1, but that the 0.25  aceuraey desired has not been

achioved.

Fizure 7-12 illustrates a similar set of results for the 17 Hz tone, ‘Phe residual

error computation now ineludes the seven mades resolvable at this higher frequessy,
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No value of array tilt in the expected range does a very good job of fitting the
observed data; even the best fits account for less than 75 of the signal energy
{equivalent to a -6 dB error level). This result is believed to be due to the presence
of significant amounts of signal energy in modes bevond the seven included in the
beamformer. In the horizontal array data of Figure 7-6, such a distrihution of
energy in the higher modes has already been demonstrated; the preliminary analysis
of Section 3.12 supports the 2ame view. Further, in Section 6.6, it haz beon shawn
that such a distribution would effectively disrupt. the ability of the scheme to
properly estimate areay tilts. Thus. the results of Figure 7-12 shonld be interpreted
as proving that the first seven modes form an inadequate model for explaining the

structure of the received field. .

The two error plots just presented are typical of thoze generated by the
remaining signals in the data set. In general, the received fields for signals below
frequencies of about 40 Hz are sdequately modeled by the modes that ean be
resolved with the FRAM IV vertical array: therefore, reasonalide estimates of array
tilt can be generated from the residual error analysis for these wnes,  Minimam
residual errors of less than -10 dB (heiter than a 90 fit) are typically achivved for
these signals,  The minimum can gormally be determined to an acenraey of hetter
than &1 for these data sets, but the desired 0.25  aceuracy appears unachievable
with this method.  Based on Table 61, the technigue probably provides acenrate
first mode results and partially accurate second mode results,  The reliability of
second and third mode amplitude estimates can be expected to improve sumewhat
at lower frequencies for two reasons: the sensitivity of the estimates o tilt angle
decreases: and the residual eeror plots for these frequencies tend to provide better

array tilt data,

By contrast, all of the signals above 10 Hz in frequensy provide resubts similar
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to those shown in Figure 7-12, making even a rough estimate of array tilt
impossible.  Additionally, analysis of the 35.50 Hz signal, while producing a
respectable minimum error, generates a double minimum several degrees apart.

Therelore, no reliable tilt angle estimate can be made for this tone cither.

The array tilts measured by the residual error minimization technique and the
correzponding minimum errors achieved are listed in Table 7-1. The best available
fit gencrally becomes poorer with increasing frequency. The excelleént fits achivved
at the lowest end of the frequency spectrm must be at least partially attributed to
the range dependence of the channel, which tonds 1o suppress propagation of many
of the medes that eannot be resolved by the array at the lower frequencivs, Nole
that the tilt angles are reported to the nearzst 0.05 ° only beeause the beamforming
algorithm requires an input of infinite precision.

Array Tilt

Minimum Corresponding  Assumed in
Frequeney Error Arrav Tilt Processing
15.00 Hz -17 dB 1.70° 2.05
17.75 He -1 4R -0.15 -0.15
20.00 Hz -12 dB 2.95 2,05
23.50 Hz 10 dB 250 2,30
30.00 Hz -11dB 1.40 2.0
35.25 Hz -12dB 165" -
35.50 Hz -0dB - -
47.00 Hz -4 dB - -
53.25 Hz -1 dB - -
55,00 1z -5 dB - -
71.00 Hz -7dB - -

Table 7-I: Results of the Areay “Tilt Estimation Procedure

As mentioned above, the residual error analysis does not provide the tilt angle
precisely enough 1o aceurately estimate all of the maodes that are resolvable by the

vertieal array.  The tilt estimates may be refined further by comparing aml
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averaging the angles estimated from (ones broadecast consecutively. Suck an effort
also contributes by providing an independent means for checking the aceuracy of
the tilt angle estimation process. A review of Table 3-IV, for example, indicates
that the 15, 20, and 30 Hz signals were all broadceast within one hour of euch othor.
It is reasonable to expect that their array tilts should be approximately equal. This
is in fact the case, with the largest difference between any pair of the three being
only about 1.57, implying an accuracy of roughly 0.8 in these three tilt angle
measurements. Assuming that the areay did not move significantly over the course
of the hour during which the three tones were broadeast, the acenraey of the il
estimate can be improved by averaging the three individual findings. This vields a
tilt angle esiimate of about 2°, which is the value that has been used in the

subsequent processing for all three signals.

The 17.75 Hz data was nol taken concurrently with any other signal in the
data set, so there is no way ¢f verifying its estimated tilt angle. The 35.25 Hz data
was taken just after the 23.50 Hz signal: a comparison between the array tili
estimates for these two cases is not very favorable, though. since a difference of over
4" is found. Both residual error plots show minimum error tilt angles that are
reasonably stable over the length of the signal. It is hardly likely that the array
demonstrated a constant tilt for the 55 minute duration of the varlier signal,
then moved 4 in tilt during the 3 minute panse between signals before ance more
becoming stationary for the full duration of the second signal, It is more reasonable
to suspect that at least one, and possibly both, of the estimates are being biased by
signal snergy in the unresolvable modes.  Such an effeet has been demonstrated
with syathetic data in Figure 6-8. The horizontal array results of the previons
seetion imply that the 3525 Hz result is probably the less reliable of the two

estimates, Therefore, no tilt angle has heen assigned for subsequent provessing of
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this tone. In consideration of the 35.25 Hz result, however, a small correction has

also been made in the tilt angle assumed when processing the 23.5 Hz data,

7.3.3 Time Series of the Modal Amplitudes

Figure 7-13 displays the modal amplitudes as a function of time for the three
modes resolvable by the array at 17.75 Hz. These levels were computed assuming a
tilt angle of -0.15°, as indicated in Table 7-I.  The results shown here are in
agreement. with the amplitudes shown in Figure 7-9 for this tilt angle.  The
amplitude of the first mode is about 113 dB re 1 xPa: the sccond madde amplitude is
7 d3 below this. The relative amplitudes of the fiest andl seend mades thus agree
with predicted values, assuming that both modes are attenuated t-qu:\ll,\:. The
amplitude of the third mode when compared with the first two is somewhat more
problematic. The measured amplitude is 5 d3 lower than that of the second mede,
while approximately equal levels are expected. This error can best be explained by
referring back to Figure 7-9. At an assumed tilt angle of -0.15 , the third mode
estimate lies in a region of high sensitivity to tilt angle, so that even small changes
in the assumed areay tilt can greatly alter the beamformer output.  These results
support the earlier conclusion that at these frequencies. the array tilt is known well

enongh to aceurately determine at Jeast the first two mndes,

Ouly about 1 dB of fluctuation is seen in Figure 7-13 for both the first and
second mode estimates over the 55 minute Auration of the signal (not including the
period of the airgun blast). These levels are in agreement with those seen in the
horizontal array data. The scemingly Iarge contour \':ll‘i:l.l ions over time  + slne to
the fact that only three data points are represented along the vertieal avis,
Fluctuations in the third mode amplitude are only a little larger, perhaps 2 (B,

This observation provides a strong indication that the array  was essentially
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stationary for the duration of the signal, since even small amounts of array
movement would generate large fluctuations in the highly sensitive third mede

estimate.

For the signals with frequencies of 30 Hz and below, reasonably reliable array
tilt estimates have been made; hence, reliable time series of the modal amplitudes
can be obtained. All the time series show a dominant first mode structure, which is
in general agreement with the horizontal array results,  The fluctuation levels
observed in these time series are also often comparable to the levels sven in the
horizontal array data. In certain instances, more significant fluctuation levels are
observed.  The time scales associated with these larger Muctuations are almost
always larger than 10 or 20 minutes. Since it is hypothesized that the eause of these

variations is vertical array movement, they are taken up in the following section.

Since the array tilt cannot be determined for the vertical array signals with
frequencices gro:\tcr'tlmn 30 Hz, valid time series results cannot be generated. The-
best that can be done is to assign a number of different tilt angles on a provisional
basis and then to examine the results, realizing that the absolute modal amplitudes
are inaccurate, but possibly allowing some general conclusions to be drawn,
particularly about signal fluctuations over time. The modal time series generated
by this procedure show a pattern similar to that seen at lower frequencies,  Some
signals show only very little fluctuation, and when larger variation is observed over
time, it is invariably associated with the time scales of longer than 10 minutes,

These alsp are discussed in the following seetion.

7.3.4 Possible Array Movements Seen in the Vertical Array Data

Several of the signals below 30 [z have indications of possible array

movement over the duration of the signal. One sueh example is the 23.5 Hz tone,
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The residual error plot for this signal is presented in Figure 7-14, while Figure 7-15
provides the modal amplitude time series data for the signal for an assumed array
tilt of 2.30°. The amplitude time series show a small (but cansistent) trend over
time; the first and second mode amplitudes tend to increase slightly, while the third
mode amplitude decreases. This drift is also reflecied by an equivalent trend in the
residual error data, which shows about a 1° change in the minimum error tilt angle
over the hour duration of the signal. These variations may be due to changes in the
array tilt over time, or they may be actual fluctuations cansed by changes in the
acoustic transmission path. Unless actual array tilt measurements are available, the
two effects are fundamentally inseparable.  Certainly, the data presented here does
not. preclude cither explanation.  However, the consistency of the residual error
result over time suggests that at least some of the variations observed here are due
to array movement during the signal. It is important to observe that the variations
under discussion appear to have time scales in the 10 to 20 minute range. and that
there is no evidence of significant fluctuations possessing significantly shorter time
scales.

Although it is not possible to obtain accurate modal amplitude results in an
absolute sense for the signals that are above 30 Iz in frequency, the stability of
these signals over time can be assessed in a qualitative fashion by computing the
modal decomposition for an arbitrary tilt angle. For such a situation, the outputs of
the beamformer can be expected to he constant over time if no significant temporal
fluctuations are present in the sound field. When this is done, many of the signals
above 30 Hz demonstrate a considerable amount of long term variation in the
resultant modal amplitudes. It is even more difficult to assess the meaning of these

long term fluctuations than it is for those present in the lower frequeney data, sinee

meaningful residual error analysis is not available,
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In summarizing the issues of fluctuations and array movement in the nuxdal
amplitude time series generated by the vertical array, it can be said that the short
term amplitude fluctuations ohserved (those with time scales on the order of
minutes) are small, and roughly equivalent in size to those seen in the horizontal
array data, Some longer term fluctuations, of time scales that are greater than 10
or 20 minmtes, have been observed in the vertical array dawa. .\ definitive
separation of these variations into array movement effects and propagation path
fInctuation effects is not possible, due to the laek of Lield measurements of vertieal
array tilt angle over time. Two observations provide cireumstantial evidenee tha
at least the fluctuations in the lower {requency data (that at 30 Haz and helow) may
be primarily related to array movement.  The first is the nature of the residual
error analyses available for the low frequency data; these analyses are consistent
with the array movement explanation. The other is the laek of any ~imilar
fluctuations in the processed outputs of the horizontal array data. which indieate
that the phenomena are probably array specific. Long term fluctuations in vertieal
array modal amplitudes for frequencies greater than 30 Iz are similar 1o those
helow 30 Hz: reliable residual error analyses and comparative horizontal array data

are lacking for these signals, though.

7.4 Modal Amplitude Analysis

The absolute modal amplitude estimates available from the beamformers can
be exploited in two ways. The values generated from the vertical array data by
modal beamforming can be compared to those made with more standard plane wave
techniques employed with the horizontal array data in order to quantitatively verily

the consistency of the two methods. This must be accomplished with first mode

data, since the horizontal array cannot provide aceurate amplitude estimates for
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higher order modes. Also, the comparison of observed levels to those predicted from
propagation theory provides insight into the unique nature of long range
propagation of low frequeacy sound in the central Arctic, and allows experimental

measurements of modal attenuatic: coefficients to be made.

7.4.1 Comparison of First Mode Amplitude Estimates from the

Horizontal and Vertical Arrays

Figure 7-16 summarizes the estimates of the first mode amplitudes versis
frequency for both the horizontal and vertieal array data sets, When the two
groups of results are compared, it can be seen that the horizontal array values
uniformly exceed the vertical array levels by about .4 dB over the 15 10 30 Hz range,
the region in which both sets of estimates are most accurate.  The lack of aceurate
array tilt estimates maKe the vertical array results outside this range less reliable:
the values shown for the horizontal array at 47 and 53.25 Hz are also questionable,
since the first mode no longer dominates in these signals. For this reason, the data
points at these frequencies have been connected with a dotted line. The 4 dB
difference between the two sets of results appears to have two causes. A\ slight
mismatch between horizontal and vertieal array hydrophone sensitivities aceonnis
for about 1 or 2 dB of the difference. The remaining 2 dB error is due to the
slightly different propagation paths over which the two sets of signals were
transmitted. Although the signals in cach data set were grouped fairly closely in
time, eight days elapsed between the last horizontal array data and the first vertical
array data studied here. Note, however, that the issue is not merely one of range.
as the TRISTEN/FRAM range for the horizontal array data (265 km) was actually

slightly larger than that for the lower level vertical areay data (254 ki),




-244-

g
]

120 4B

)

110 48

100 4B

First Mode Amplitude (dB re 1 uPa rms

lLll_!llllllillllllllllllllllLlllllllllllllllllllllllllllLll

90 dB \
\ \\\
\
\ : AN
\ \\
\ N N
\‘ \\
80 dB . ;
OTheoretical
(no attenuation)
AVertical Array
OHorizontal Array
70 dB TTT T T T[T T [T T[T T TT T[T o7 7777
0 10 20 30 40 50 80 70 80

Frequency (Hz)

Figure 7-16: Summary of First Mode Amplitude Measurements




130 d.—:

,\m dl—_-_

" ]

E -

- .

o ]

A n

e -

- 110 dl—:

v .

m . ';\

o . \

-’ : \

0 100 4B— \ -

° . ~ \ -

‘ 3 ] oy
= . \
g - ‘
\

7 ) T F T

< : - )\ " \\\

o 90 dB— o N

=) : A_L \\

Q o \

= - AN
— ‘

g . 1]

S .

O 80 dB— .

n 71 OTheoretical
. (no attenuation) L
1 AVertical Array -

70" IIIIIﬁIIIIIIIIT1IIIIIIﬂI]lllllrlITlllI

0 10 20 30 40 50 60 70 80

Frequency (Hz)

Figure 7-17: Summary of Second Mode Amplitude Measurements




~246-

130 db—

)

[

3

&
Lasssanaaaalaenassnss

110 4B

-
8
[
o

Third Mode 'Amplitude (dB re 1 uPa rms

3
[- 3
-]

OTheoretical
(no attenuation)
AVertical Array

[
o
llllllllllllllllljlllllllxllllllllllllll

70 4B T T[T T T[T T [T T T[T T TA T T[T 771777
0 10 20 0 40 S0 80 70 80

Frequency (Hz)

Figure 7-18: Sumamary of Third Mode \mplitude Measurements




7.4.2 Modal Attenuation CoefTicient Measurements

In addition to the data deseribed above, Figure 7-16 also shows two other
types of information. The amplitudes of the first mode estimated from vertical
array data at higher frequencies are presented in a different fashion than those at
lower frequencies.  Since no accurate estimate of array tilt is available at these
frequencies, the range of amplitudes generated by all possible array tilts between
-4" and 4" is displayed instead. The actual markers that are connected by the
dotted line indicate the first mode levels for one subjective estimate of the actual
areay tilt. While this data is much less accurate than the lower frequeney results,
the ranges do provide valuable information about the general trend of the amplitude

with frequeney. .

Also presented is the amplitude of the first mode as a funetion of frequeney at
a range of 254 km for an ideal horizontally stratified channel (i.e., geometric
spreading with no attenuation mechanisms present).  Figure 3-3 has heen used as
the source spectrum in computing these levels. The difference hetween this curve
and the experimental results indicates the attenuation loss for the first mode as a
function of frequency. It is obvious that an attenuation mechanism is at work in
the sound channel, and that it gets quite severe at higher frequencies.  The
attenuation is the cause of the unexpectedly low first mode amplitudes seen above

40 Hz in the data.

Figures 7-17 and 7-18 summarize similar results for the second and third
modes, respectively.  Again, the eifect of the attenuation mechanism can he seen,
particularly at the higher frequencies. Note that the measured modal amplitudes
for the higher modes display greater seatter than do those for the first mode; this is

indicative of the increased sensitivity to array  tilt errors that  the modal

beamforming process exhibits at higher order modes.
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To characterize the modal attenuation further, Figures 7-19, 7-20. and 7-21
have been included. In these plots, the actual attenuation experienced by the first,
second, and third modes is displayed as a function of frequency. Vertical array
results at higher frequencies are again plotted as ranges connected by a dotted line.
The data is plotted on a scale of total attenuation at 254 km; equivalent attenuation

coefficients can be recovered simply by dividing the dB levels by this range.

Experience [25] suggests that the cause of the attenuation is the rough ice
canopy: a comparison of the three plots supports this supposition by demonstrating
direetly that the attenuation mechanism is located in the surface duct of the ceitral
Arctic profile. Such a conclusion can be reached by noting the relationship between
the onset of severe altennation and the mode number. In Figure 7-19, the
qxpcrimentally Jetermined attenuation for the first mode is seen to be strongly
increasing, even at the lowest frequencies in the data set. By cow..,  on, the point
where attenuation becomes significant is delayed somewhat in frequency for the
second mode (Figure 7-20), and even more for the third mode (Figure 7-21).
Typical frequencies for the onset of severe attenuation are 30 Hz for the second
mode and 50 Hz for the third mode. These values correlate well with the
frequencies at which the various modes transition into the surface duct, as discussed
in Section 4.5.2, From this, one can conclude that the attenuation mechanism must

be located in the surface duct, making the rough ice surface a prime candidate.

Figures 7-19 through 7-21 also include plots of predicted modal attenuation
versus frequency for two different rough surface scattering theories.  Both eases
assume a rough pressure release boundary at the ice-water interface. The statistics
of this boundary are assumed to be those given by DiNapoli and Mellen [25). as
discussed in Section 4.3, The simpler case is the well known Kirehihofl

approximation. for which ihe attenuation coefficient of the " mode ean be

2




computed from

Here o is the surface roughness (taken to be 2 m) and ¢,(0) is the sound speed at the

surface, while ¢/(0) is the slope of the mode’s normalized shape function evaluated at
the surface and ¢, is its horizontal phase speed. The other case is the full method of
small perturbations (MSP) solution, as developed by Kuperman and Ingenito [47).

In this development, the modal attenuation is shown to be

0p= °—;—-(-l Re[(c)] . (7.2)

where

Ale,) = (2%)'70' f \/ (:—:({)9;) '(Zia - .,) dii . (7.3)

In equation (7.3), AR) is the two-dimensional spectrum of the rough surface (here
given by equation (4.1) with an assumed correlation length of 44.8m), and i is ¢ unit
vector in the direction of propagation. The integration is carried out over a full
range of vectors i in the horizontal plane. Details of the derivations of both these
results ean be found in [47]. It is important to note that both contain factors that
include the square of the slope of the mode shape evaluated at the surface, a term
which is not present in the more familiar plane wave scattering results, and. hence,
often overlooked. These factors reflect the ability of the ice to seatter modes with
their energy concentrated near the surface more strongly than those with their

energy concentrated at deeper depths.

The attenuation predictions of both models for the first three modes have

been plotted in Figures 7-19 through 7-21, respeetively.  The agreement of the
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experimental data with the Kirchhoff approximation is uniformly poor. On the
other hand, the attenuation results predicted by the MSP match the first mode data
quite well, and the second mode data somewhat less exactly. It is possible to
speculate that the poorer second mode fit is caused by the scattering of first mode
cnergy into the sccond mode by the ice. In general, any scattered energy
redistributes itself across the modal spectrum. If significant. amounts of motion were
present at the surface, the scattered energy could be expected to be temporally
incoherent when compared with the transmitted signal. For the Arctie, though. it
appears reasonable to model the rough surface as being essentially stationary over
time, so that an scattered energy wounld still be coherent with the speenlar
transmission. Much of the scattered energy is lost into higher order modes that do
not. propagate well in the channel; however, a considerable percentage can be
expected to end up in the lower order modes. In fact, the second mode will
normally receive the largest share, since modal coupling is typically strongest
between neighboring modes. In the 30 to 60 Hz frequency band, the first made
excitation exceeds that of other modes by 15 to 30dB (see Figure -1-9). Thus. energy
seattered from the first mode into the second mode may be significant when
compared to second mode excitation levels, even though the coupling coefficient
itself is negligibly small. Under such cireumstances, the attenuation experienced by
the second mode would appear to be reduced, as is the case in Figure 7-20,

The MSP also appears to fit the third mode data (Figure 7-21) reasonably
well, although there are hints of a phenomenon similar to that of the second mode
in the 71 Hz data point as well. It must be remembered that the third mode data is
probably only partially resolved at best, due to the inability to estimate the array
tilt angle to sufficient accuracy. As might be expeeted, the third mode data display

less consisteney than those of the other two modes,
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7.4.3 Comparison with Shot Data

It is of interest to contrast the horizontal and vertical array data results just
presented with data taken from an impulsive source broadcast over the same
channel.  This exercise confirms the horizontal array modal reccived level
measurements directly and the vertical array results indirectly. It also generates

insight into the relationship between the results of two data sets.

Figure 7-22 displays the sonogram of a shot set off at 300 feet and then
transmitted over the TRISTEN/FRAM sound channel. The sonogram is a plot of
received level versus frequency and time, and is generated by computing a sequence
of very short length spectral estimates from the time series output from a single
hydrophone, in this case the 90 m hydrophone from the vertical array. The results
shown here were generated using a Burg spectral estimation technique to-provide
greater frequency resolution in the 250 msec window length used. A new spectral
estimate was completed every 100 msee. The original time series for this shot has

already been presented in Figure 1-2,

The peak marked with a dotted line is the first mode arrival, corresponding 1o
the long tail of the signal displayed in Figure 1-2. This ean be shown from 2
comparison of the measured dispersion characteristic with that expected of the fiest
mode. Note that the received level of the first mode arrival is quite strong and is
reasonably flat versus frequency up to about 40 Hz, after which it almost completely
disappears. This is exactly the effect that has been demonstrated in the horizontal
array tonal data which, in turn, have been shown to be in quantitative agreement
with the vertical array tonal results in Figure 7-16. In retrospect, the strong drop in
the received level of the first mode in both the horizontal array data and the shot

data can be seen to be a combination of two effe~ts. The first mode exhibits some

attenuation even at the lowest frequencies in the  ta set, and this attenuation
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increases rapidly at higher frequencies. Below 10 Hz, this attenuation is offset by
the increase in size of the mode shape at 91 m, which causes both the source and
the receiving hydrophones to couple to the first mode with increasing efficiency.
The two effects almost cancel themselves, making the first mode reccived lovel
appear relatively flat over this frequency range. Above 0 Hz the size of the first
mode shi; o at 91 m stops growing with frequency (as is seen in Figures 4-8 and
4-9). The balance between the two effects is lost, and the now severe first mode
attenuation dominates the remaining results, causing the very quick drop in first

mode received level that is seen in the data.

7.6 Mode Coherence Measurements

The results of the previous section indicate -that the modal beamformer is
performing reasonably well for frequencies of 30 Hz and below, where reliable array
tilt estimates are available. This means that meaningful estimates of the colicrence
between the various modes can also be made. The results of these coherence
measurements for the vertical array signals below 30 Hz are given in Table 711,
The window of data extracted from each signal to make the coherence estimate is
the longest uninterrupted period available; the lone exception to this is the 23.5 Hy
data, where the processing software limits the number of data points used. Air gun
blasts, such as the one imbedded in the 17.75 Hz data, and other anomalies have

been avoided so that the results would not be biased by invalid data.

The resultant coherence estimates are striking because of their uniformly large
values,  For all intents and purposes, these results show that the central Aretic
chaanel can be considered to be a completely deterministic medium in time, and

that all the different source-receiver propagation paths are completely phase locked,

The slight variation that does exist between results appears to be strietly an issue of




Frequency (Hz)
Length of Average (sec) 400 2725 1120 2200 550

Mode 1-2 Pair 0.99 0.98 0.99 0.99 0.99
Mode 1-3 Pair 0.99 0.93 0.99 0.99 0.99
Mode 1-4 Pair - - - 0.08 0.99
Mode 1-5 Pair - . - - 0.99
Mode 2-3 Pair 0.90 0.93 0.99 0.99 0.99
Mode 2-4 Pair - - - 0.93 0.99
Mode 2-5 Pair - - - - 0.99
Mode 3-4 Pair - - - 0.97 0.99
Mode 3-5 Pair - - - - 0.99
Mode 45 Pair - - - - 0.0

Table 7-II: Mode Coherence Estimates for the Vertical Array Data

SNR. The low levels of ccherence in all pairings that include the third mode at
17.75 Hz, for example, can be explained by realizing that the third mede amplitude
is far enough below that of the first mode to allow the background noise level to
exert a small amount of influence in the coherence estimate.  Since confidence
intervals for coherence estimates very close to unity are also quite tight [13]. the

estimates are guaranteed to be quite relinble from a statistical viewpoint,

While true coherence measurements cannot be made for vertical array signals
above 30 11z, gross averages of observations over many different assumed array tilts
are again possible. ‘Like the lower frequency results, the modes at the higher
frequencies also appear to be almost completely coherent.  Modes that appear
incoherent for a given tilt angle can normally be explained by an SNR argument.
On the average, some small amount. of coherence degradation can be seen at the
higher frequencies, indicating that upper limits in both frequency and averaging

length exist, beyond which the present results are not valid.  Typieal coherence

values are about 0.96 for the 47 Hz data, and roughly 0.92 for the 71 Hz data,
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compared to values of 0.99 seen at lower frequencies. None the less, these coherence
levels are close enough to unity to conclude that the present experiment only covers
a [raction of the frequency/duration space over which these conclusions are

applicable.
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Figure 7-23: Time Series of the Relative Phases of Various

Mode Pairs for 17.75 Hz Data

7.6 Relative Phase Measurements for the Vertical Array Data

The high levels of coherence just demonstrated between the various modes
indicate that their relative phases should be very stable over time, This is the ease,
as s seen in Figure 7-23. The three time series displaced represent the variations of
the relative phases with time for the three possible pairings of the modes resoly able
at 17.75 Hz.  As expeeted, the relative phases are seen to be extremely stable over

the full 55 minute duration of the signal.  The mode 1-2 pair is the most stable,
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demonstrating not more than a few degrees of fluctuation over the course of the
signal. The somewhat larger fluctuations in the pairs involving the third mode
reflect the same SNR issue discussed in the last section. Since the value of the

mode 1-3 pair is very near to 180°, a large amount of phase wrap is visible.

Table 7-1II gives the experimentally measured relative phases for all possible
pairs of resolvable modes at frequencies below 30 Hz. The signal durations used to
compute these values are identical to those used in the coherence estimates,
Assuming a source-receiver range of 254 km and a range independent channel, a
comparison of the phases measured at 17.75 Hz with the values expected can be
made. The results are presented in Table 7-IV. The significant differences between
the theoretical and experimental data indicate two things. First. the calculation of
the expected relative phase is sensitive to inaccuracies in the assumed horizontal
phase speeds of the modal pairs. For example, a 1 m/sec difference in the first
mode phase speed results in about a 40° in the predieted data of Table 7-IV,
Second, the measurement is also quite sensitive to range variations in the channel,
since thee total phase represents an integration of all the perturbations encountered
in propagating through the channel. These appear to be non-negligible for this
situation. Thus, while the relative phases themselves are quite stable and well
behaved, there is some question as to whether it is possible to predict them

accurately enough to accomplish passive source ranging in this fashion.

7.7 Summary

The horizontal and vertical array tonal data sets from the FRAM IV Arctic
Acoustic Experiment that are described in Sections 3.9 and 3.10 have heen

processed using the algorithms discussed in Chapter 5. The results for both have

been presented, compared, and analyzed in a variety of ways,
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Frequeney (Hz) 1500 775 2000 2330 3000
Mode 1-2 Pair 171° 102* 120 48° 135°
Mode 1-3 Pair -183° -166° -22° -65° 174°
Mode 1-4 Pair - - . -154° 85°*
Mode 1-5 Pair . - - . 38°
Mode 2-3 Pair 38 92 -142° -113°* "
Mode 2-4 Pair - - - 158° -50*
Mode 2-5 Pair - - - - = I
Mode 3-4 Pair - - - -89° -89 °
Mode 3-5 Pair - . - - -136°
Mode 45 Pair - - - - -7

Table 7-III: Relative Phase Estimates for the Vertical Array Data

Measured Sxpected
Mode 1-2 Pair 102° 154°
Mode 1-3 Pair -166° -16*
Mode 2-3 Pair 92 . -170°

Table 7-IV: Comparison of Measured and Expected Relative Mde

Phases for 17.95 Hz Data

The horizontal array data have been beamformed in azimuth using the single
beam MLM algorithm in order to find the correct azimuth angles for the TRISTEN
source. This procgssing results in azimuth angle estimates that are accurate to
about £0.1°. The azimuth angles obtained agree completely with less precise
estimates available from the navigation data. The MLM algorithm performs guite
well in this application, producing a much narrower main lobe and significantly

lower side lobe levels than an equivalent conventional beamformer.

The horizontal array has also been steered in the vertieal direction at the
azimuth angles previously determined to study the modal structure of the reevived

field. This has been accomplished by varying the assumed horizontal phase speed

with which the steering vector is romputed. The processing has besn accomplished
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twire: once with the single beam MLM algorithm to provide high resolution in phase
speed; and once with the conventional beamformer to recover the correct received
levels. The horizontal array data below 30 Hz exhibit a strong peak at hosizontal
phase speeds closely matching those predicted for the first mode. Above 40 Hz, this
first mode arrival vanishes; instead, a much more evenly distributed set of modal
received levels is observed, possessing a very small peak au phase speeds
corresponding to deep RSR path propagation. This ocenrs even though analysis of
the modal structure suggests that near 40 Iz, the received level of the first mode
should dominate those of other modes by as much as 60 dB. The region between 30
and 40 Hz might be considered to be a transition region between the two
propagation regimes. Although a strong first mode arrival is seen in this band. it is

perhaps not as great as might be expected from studies of the modal structure,

In the 27 Hz tone taken from the horizontal array, a strong fade similar to
that scen by Mikhalevsky [57) has been identified. A study of the time series of this
fade seems to indivate that it is a phase discontinuity which, in turn. causes the
instantancous frequensy of the signal to walk out of the pass band of the low pass
filter.  Analysis in toth the horizontal and the vertical shows no observable
differences between the structure of the received ficld before and after the fade,

suggesting that the cause is probably source related.

The vertical array data have been processed using the multiple beam Jeast
squares beamforming algorithm to produce modal amplitude and phase sstimates.
Three different types of output have been generated for the vertical array data set,
One s a plot of the amplitude estimates for all the rezolvable modes versus thne Tor
one given array tlt angle. The second is a plot of these same amplitude estimates,
now displayed at one given time and across all reasonable values of array til, The

third is a plot of the residual error versus time and assumed Gl anele, This last
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may be considered to be a condensation or integration into a single number of the
all the various modal amplitude estimates made at one time and one assumed tilt
angle. The three outputs represent different cross-sections along mutually
orthogonal planes of an amplitude function that depends on mode number, time,

and assumed tilt angle.

The modal decomposition of real data has been shown 1o be sensitive 1o the
assumed array tilt in a fashion similar to the demonstrations made with synthetie
data in Section 6.3. This sensitivity is seen to increase at higher frequencivs and
higher mode numbers. A tilt angle accuracy on the order of £0.25° appears to be
needed if one wishes to properly extimate all of the mades resolvable by the vertieal
array at any of the frequencies of interest. This requirement can be relaxed

somewhat for lower frequencies and lower mode numbers.

As shown in Section 6.6, plots of residual error on the time-tilt plane allow
estimation of the actual array tilt from the acoustic data. For the purposes of array
tilt estimation, the residual error plots generated for the verticul array data have
been used to compute one average tilt angle for the full duration of each signal,
despite indications that the array may not be completely stationary over periods of
fonger than about 20 minutes. Where possible, the tilt angle estimates made by this
procedure have been verified by ecomparing estimates from cons. cutively hroadeast
signals.  For frequencies of 30 [z and below, it appears that the estimation
technigue is capable of generating estimates to an accuraey of about 0.7 , with
somewhat better results at the very lowest frequencies in the data set.  This
precision allows valid first mode estimates and partially valid second mode estimates
to be made: at the lowest frequencies, third mode estimates may abo be reasanably
trustworthy, Al tilt angle estimates made by this techuigue fall inside the expeeted

limit of 5
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The residual error plots for signal frequencies above 30 Hz i&ierally do not.
demonstrate the single deep minimum necessary to make accurate array tilt
estimates. Even when estimates are possible, they do not appear (o be consistent
over consecutive signals. This problem is attributed to the increase at these
frequencies of the proportion of energy carried by modes that are fundamentally
unresolvable by the array. This effect has been demonstrated in the results of the
horizontal array data. The outputs of vertical array modal decompositions versus
both time and tilt angle also verify this effect. Above 30 Hz, the first mode
amplitude also appears to be abnormally low when compared to those of higher

mades in the vertical areay data,

The temporal stability of all the data examined in this chapter appears 10 be
similar to that scen in the preprocessed time series of Section 3.12. In general, short
term fluctuations for both horizontal and vertical array data are in the 1 dB range.
Some larger short term variations have occasionally been noted on specifie sensors
in the horizontal array, but these do not appear to be coherent over the full array.
Longer term variations (on the order of about 20 minutes) are seen in selected
vertical array signals. The variations appear to increase as the frequency of the
signal increases,  No such long term fluctuations are observed in the horizontal
array data.  The lack of actual array tilt measurements makes the separation of
channel fluetuation effects from array movement effects impossible, but nothing in
the data precludes the latter from explaining the great majority of the long term

variations seen.

The first mode amplitudes, as computed from the vertieal array data, have
been shown to be consistent with those derived from the horizontal array data over
the range of frequencies (below 30 Hz) where accurate estimates of each ean be

made.  Both the horizontal and vertieal array data indicate significant attenuation




-264-
of first mode energy. Similar results sre seen in the second and third mode
amplitude results taken from the vertical array data. The nature of the auenuntior\n
curves versus frequency for the three modes demonstirates that the source of the
a*tenuation is located in the Arctic surface duct. A good fit to the measured first
" mode attenuation can be generated by applying the mcthod ~t small purturbations
to a rough pressure release surface located at the ice-water interface, whers the
statistics used for the rough surface have been determined experimentally from ice
profiles. A simpler approach using the Kirchhoff approximation yields only a very
poor match to the measured attenuation values. Second and third mode
attenuation estimates made with the method of small ‘perturbations mateh
experimental data somewhat less perfectly, predicting larger attenuation than is
actually obsuived at higher frequencies. This result could possibly indieate that
modul coupling between the first mode and neighboring modes cannot be ignored.
If this is indeed the case, then the observed .. "ility of the received sigrals requires
the scattered field to be completely cob . with rispect to the specular field.

N

which, in turn, presumes a rough surface that is essentia)! stationary over time.

Coherence measurements for the various mode pairs have been made for
signals with frequencies 30 1z and below, where reliable tilt angle estimates are
available.  Average modal coherence over periods of as long as 45 minutes is
typically 0.99; all the measurements made exceed a value of 0.93. The few lower
results observed appear to be caused by noise interference. By averaging results
over a number of arbitrarily selected tilt angles, it is possible to get an indication of
the coherence levels likely to be found at higher frequencies, where actual array tilt
estimates cannot be made. Typical values are 0.96 at 47 Hz and 0.92 at 71 Hz.
Therefore, the various propagating modes for any signal in this data set ean be

considered to be completely coherent over the full duration of the transinission,
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The large coherence values observed also gusrantee that they are highly reliqble
estimates. The slightly lower values seen at higher frequencies lead. to the
suppositicn. that there is some fraquency/duration limit beyond which these

conclusions would no locger be valid.

The high levels of coherence observed gusrantee that estimates of the relative
phase of various mode pairs are meaningful. These relative phase. estimates appear
to be extremely stable, exhibiting only vary small variations over time. However,
the phases measured do not closely match those that would be expected if the
channel were totally range indcpende{tt. Thus, while the relative modal phases are
quite stable, there appears to be some question about the ability to accurately

predict them.
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Chapter 8

Summary and Conclusions

This chapter is divided into three sections. The first summarizes the general
topics covered throughout the thesis, while the secord discusses the major
conclusions, locating them in the larger framework of signal processing theory and
underwater acoustics propagation theory. A short list of some ideas for further

work along these lines completes the thesis,

8.1 Summary .

The twin issues of modal beamforming and mode coherence” have been
investigated at some length. The prime motivation for studying these topies comes
from a desire to exploit the modal nature of sound propagation in a waveguide more
fully, so that the source's range and depth may be estimated directly from sound
field measurements. To this end, two necessary contributions have been made.
First, beamforming techniques that address the waveguide nature of low frequency
sound propagation in the oceans have been studied extensively and implemented on
real data, including data taken from a vertical array: this has not been
accomplished previously. Second. the relative amplitudes and phases of the various
modes have been measured and their stability studied through the use of modal

coherence estimates. This also is an original contribution of this thesis.

Some of the practical differences between horizontal and vertical areays have
been analyzed. The most important difference from a signal processing viewpoint is
the increased importance of vertical array sensor displacement. This is due to the

increased size of the sensor displacements, which is eaused by the greater scopse of
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vertical arrays; and to the fact that the displacements occur in an organized pattern

across the face of the array.

A preprocessing scheme involving two stages of quadrature demodulation, FIR
low pass filtering, and decimation has been implemented to reduce the data set to a
usable size prior to further processing. This scheme results a complex output time
series for each channel that is demodulated to within &1 mHz of the nominal signal
frequency, filtered in a passband of 12,5 mllz, and downsampled to a sample
interval of 1.6 sec. The resulting ovtput time series contains about 100 independent

degrees of freedom in a typical 55 minute signal,

The modal structure of the sound channel encountered during the FRAM IV
Experiment. has been studied extensively, and predietions of the mode shapes and
associated horizontal phase speeds have been made for all frequencies of interest
here. The results have been analyzed both with respecet to relative mode shape sizes

.at‘ 91 m (the deployment depth for the TRISTEN source and the FRAM horizontal
array) and with respect to horizontal phase speed variations as a funetion of
frequency.  The arrangement of the experiment makes both the souree and the
horizontal receiving array highly tuned to first mode propagation; first mode
excitation typically exceeds that of other modes by more than 15 dB.  The
variations of phase speed with frequeney allow one to observe the transition of
modes from the deeper sound speed profile into the strong Arctie surface duet. The
effect of variations in the sound speed profile is shown to be small compared te the

effeet of the overhead ice canopy for central Arctie surface duet propagation.

Four different algorithms for computing modal decomposition of the observed
sound field have been developed theoretivally. These four algorithins include single
beam and multiple beam variants of both the least squares and MLM z2lgorithins,

The least squares algorithm is shown to be a true least mean squares linear
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estimator for the complex modal amplitudes; its single beam variant is exactly the
equivalent of the conventional beamformer. The MLM algorithm is shown to be a
weighted least mean squares estimator, with the weighting essentially being the
inverse of the scnsor noise. The performance of all four metheds has bheen

compared.

In general, the multiple beam least squares technique can always be expeeted
to provide better performance than its single beam counterpart, as long as the
beams included together in the multiple beam approach are all different enough to
avoid matrix singularity issues. Problems of this type are encountered when one
begins to deal with modes not fundamentally resolvable to the array.  The modal
resolution of a vertical array may be limited in two ways, by its length and by
inadequate inter-sensor spacing. An overly short array makes it difficult to resolve
neighboring modes, while inadequate inter-sensor spacing causes Nyquist-like
alding for modes widely separated in mode number. It has been demonstrated
that the FRAM IV vertieal arvay is array length limited for the low frequencies of

interest in this thesis.

The single beam MLM algorithm can be expected to provide resulution
superior to that of any of the other approaches in situations where the assumptions
underlying the method are met. The most important of these assumptions requires
that all the energy in the various modes be compleiely inechierent. The presenee on
coherent energy in several different beams eauses severe distortions of the sineje
beam MLM aigorithm output, though. This coherent interference problem can be
theoretically eliminated by the use of the multiple beam variant of the MLM
algorithm. but the practical realities of this approach make it unattractive. Thus.

the multiple beam least squares processor ias been chosen for use with the vertieal

array data analyzed here. It has been demonstrated that the single bean ML
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algorithm still provides higher resolution than either of the least squares approaches
when properly used with horizontal arrays, even though the coherent interference
problem corrupts the output levels. Therefore, the horizontal array data have been
processed twice, once with the single beam MLM algorithm for resolution and once
with the single beam least squares algorithm for the purpose of quantitative

estimation of the received levels.

The effect of vertical array tilt on the modal decomposition process has been
investigated.  An examination of the fundamental physies of the process suggests
that the modal heamformer results are vory sensitive to variations in areay tilt over
the range of tilt angles most likely to be encountered with the FRAM IV vertieal
array, which is from -5 to 5" away from vertical. This examination also leads to
“a simple method for estimating such tilt angle sensitivity.  Upon application to the
FRAM IV vertical array, it is found that the tilt angle must be known to abowt
£0.25" in order to properly resolve anything more than the first mode.  This
sensitivity to tilt angle increases at higher mode numbers and higher freguencies,
Since no tilt angle measurements are available for the FRAM IV Experiment. a
scheme for estimating the array tilt from the acoustie data has been developed and
implemented in this thesis, The method involves the minimization of the residual
error associated with the multiple beam least squares heamlorming algorithm over 3
reasonable range of assumed array tilt angles. This seheme has been shown eapable
of tracking the array in tilt angle by simulation: its performance is dependent upon
the total amount of energy present in the modes that are included i the
beamformer relative to the amount present in modes not resolvable by the array.
The approach is subject to bias when a Iarge pereentage of the signal enerey that is

present resides in fundamentally unresolvable modes.

Twao extensive tonal data sets taken during the FRAM IV Aretie \eoustic
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Experiment have been processed and analyzed in this thesis. One set was recorded
from the hydrophones of the horizontal array available at the FRAM ice camp,
while the other set was recorded from eighteen sensors of the vertical array
deployed at the same camp. The horizontal array dats have been ansiyzed .to »
provide experimental amplitude and horizontsl phase speed measurements for the
first mode; these, in turn, have been used to succemsfully test the consistency of the
modal beamformer output and the validity of the mode structure determined in
Chapter 4. The vertical array data has been usad to measure madal amplitudes and
relative phases for various low order modes, and to make estimates of the temporal
stability and coherence of the complex modal amplitudes over time. The modal
amplitudes measured have been analyzed with respect to the attenuation observed.
snd measured modal attenuation levels have been compared with predicted levels
using both the Kirchhoff approximation and the full method of small peﬂurbini«ms.
Good agreement with experimental attenuation results hax been obtained from the
latter method using a simple rough free curface model and experimentally derived
extimates of the ice canopy statistics. The stability and coherence measurements
have been used to investigate the nature of the phase relationship between various
modes. It has been concluded that the central Arctic sound channel ean be
considered to bhe completely deterministic in terms of signal propagation over
periods of time well in excess of one hour. Al propagating modes appear 1o be
phase-locked indicating that no independent, phase-random propagation paths exist

in the Arctic for these time seales and operating frequencies,




8.2 Conclusions

The important conclusions of this thesis fall into the same three general
categories into which the contributions discussed in Section 1.4: results pertaining
primarily to the discipline of signal processing; results dealing with the practical use
of vertical arrays; and results affecting the field of underwater acoustics. Each

category is discussed in turn.

8.2.1 Signal Processing Conclusions

The most important signal processing conclusion is that a methad for
decomposing the sound field generated by a distaint tonal source and recvived at a
vertical array into its component normal modes has been proven to be effective by
theory, by simulation, and by practical application to real data. This last is
particularly significant, as no previous ‘work dealing with narrowband mexdal
beamforming has involved application to actuai data taken in the ficld. Thus, .. is
thesis demonstrates the feasibility of estimating narrowband modal amplitudes and

phases direetly from data taken with a vertical array.

A number of conclusions have been reached concerning the  relative
performance of the four beamforming algorithms investigated, primarily along the
lines of comparisons between the least squares and MLM approaches and hetween

single beam and multiple heam algorithms,

The critical issue involved in any comparison of MLM and least squares
heamforming algorithms for narrowband madal applications is the coherence of the
various modal amplitudes.  What is defined as the signal for the MLM algorithm
must be incoherent with respect to everything else in the sound field, which is
automatieally defined as noise.  Violation of this requirement has been shown 1o

have severe consequences for MLM performance, particularly when the steering
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vectors that represent the various beams of interest approach orthogonality; such is
the case for the low order modes that sre of interest here. If it is desired to use the
MLM algorithm when highly coherent signals are simultaneously present on
different beams, then a multiple beam approach that includes all possible beams
upon which the coherent energy can arrive must be used. Alternatively, it may be
possible to create an effective steering vector from a properly weighted sum of the
beams. The former approach is generally infeasible, because the number of beams
that must be included almost always exceeds the number of sensors available. so
that the MLM inversion becomes singular. In the rare cases when an adequate
number of sensors is available, one can still expect to encounter problems with the
processing stability of the algorithm. On the other hund, the latter approach
generally requires one either to index the beamforming over an unaceeptably large
number of parameters (all possible relative modal amplitudes and phases). or 10
somehow solve the modal propagation problem’aﬁriori. such as through the use of
normal mode or parabiolic equation predictions. Although it is clearly not of use for

the present effort, this final method does offer some promise.

It is interesting to note that in situations where the MLM algorithm has been
traditionally employed, namely, for horizontal arrays when high resolution is
needed, the effects of the coherent interference problem are minimized.  Higher
resolution than that of conventional approaches is in fact achieved, at the expense
of accuracy in the absolute levels computed.  This effect hax probably been
incorreetly attributed to the issue of MLM bias in the past, masking the coherent

interference problem.

By comparison, the performance of the least squares algorithins is not sensitive
to the issue of coherence between signal and noise. making it much more robust,

Additionally, because the technigue is linear. it does not suffer from the bigs issues
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known to plague MLM slgorithms. Still, the resuits of Chapter § indicate that leant
squares approaches provide significantly less resolution than MLM techniques when
the latter can be applied.

The major difference between multiple beam algorithms and their single beam
equivalents stepped over the same set of steering vectors is that the multiple beam
processors force the decoupling of the various beams while the single beam variants
do not. Stated another way, each beam included in a multiple beam processor has
its nulls arranged in such a fashion te prohibit the leakage of energy detected on the
other beams included in the processor.  Whether or not thiz null placement
improves performance over that of the equivalent single beam processor depends on
two things. First, the way in which the degree of freedom that. each specially placed
null represents is employed in the single beam approach must be consideted. For
the least squares algorithm, the single beam processo, does not use null placement
to improve the results; thus, the multiple beam least squarex procexsor can be
expected to provide at least marginally better performance by eliminating the cross-
talk between beams. In the MLM algorithm, however, the single beam processor

deploys the nulls in such a [ashion as to minimize the total noise power allowed into

“the beam. Thus, the multiple beam MLM processor decouples the inciuded beams

only at the expense of less satisfactory noise rejection performance. If the encrgy m
the different beams is incoherent, this is always a losing proposition in terms of total
performance, as is shown in Appendix B. On the other hand, if the energy is
coherent across different. beams, then the single beam MLM processor experiences
serious difficnlties due to the coherent interference, and (he multiple heam MLM

approach must be used.

The other thing that must be considered when discussing single beam versus

multiple beam approaches is the processing stability issue. If the different beams
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that one is trying to decouple with the multiple bean: algotithm look too much
alike, then the decoupling process becomes singular; the beamformer must. work so
hard to separate the closely spaced beams that it becomes sensitive 10 even small
amounts of background noise. The conclusion made here is that the imue can be
quantified for the least squares algorithm through the use of the singularity
coeflicient defined in Section 5.10. Significant processing stability problems begin to
occur at singularity coefficient values of roughly 0.4. For modal beamforming with
vertical arrays, the problem arises from the fundamental inability of the array to
resolve higher order modes. Two causes are possible: insufTicient array length. which
causes adjacent. modes 1o look oo much alike: and insufficient inter-sensor spacing.
which causes Ny 7 2 aliasing between modes widely spaced in mode number,
The FRAM IV v . .. array has been shown to be array length limited for the low

frequencies of interest here.

The final conclusion of this section deals with the usefulness of the residual
crror as a performance measure for the least squares algorithm.  Since the residiial
error essentially provides a goodness of fit measurement, it can. if used carefully, be
suceessfully employed to estimate critical unknown parameters from the ‘acoustic
data.  One example is its use in finding the array tilt angle.  Its reliability in
accomplishing such a task is fundamentally related to the percentage of signal
energy in the modes resolvable to the vertical array. When a large proportion of
the signal energy resides in fundamentally unresolvable modes, then the method ean
he expected to work poorly, since the implicit signal model is inadequate.  This
effeet has heen demonstrated with real data, where reliable estimates of array tilt

for signals over 40 Hz cannot be made.
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8.3.3 Conclusions Concerning the Practical Use of Vertieal Arrays

Three major conclusions deal with the practical employment. of vertical arraysx
in a real ocean environment. The first, which has already been mentioned. i the
modal resolution issue. The techniques developed in Chapter 5 are more than
adequate for investigating this question for arbitrary vertical arrays, and can even
be inverted for use in a design role, such as selecting sensor depths to maximize the

singularity coefficient.

From the comparisons made in Scetions 3.5, 3.6, and 3.7, it can be conclded
that the proper design and implementation of vertical arrays ix a much hardor
process than the equivalent development of horizontal arrays  Variations in
hydrophone sensitivity across the array must be very carefully controlled. since
typical applications of vettical arrays depend more heavily on accurate relative
signal levels between different sensors than do those of horizontal arrays. The
greater scopes of vertical arrays significantly increase the effect of ocean currents on
array shape and, therefore, on sensor location, to the point where the net sensor
displacements can no longer be neglected in the signal processing.  This increased
importance is due both to larger physical sensor offsets and to the fact that these

offsets now occur in an organized pattern across the face of the array.

The results of Chapter 6 and Chapter 7 leave little doubt about the conclusion
that modal beamforming techniques are extremely sensitive to variations in array
tlt.  This sensitivity increases for higher order modes and with higher operating
frequency. The combination of this conclusion with the previous one shows that
improved methods of either controlling or measuring vertical array shape, and
particularly the effective tilt angle of the areay, are needed for proper exploitation
of the unigue eapabilities of vertical arrays. From Section 6.4 it ean be coneluded

that the effective array tilt must be known to better than about £0.25  in the
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Arctic Ocean if one wishes 1o accurately measure the amplitudes and:phares of junt
the lowest order modes in the 0 to 80 Hz frequency range. A simple method of
predicting the array tilt sensitivity has been presented there. It is importznt 10 note
that the results of Chapter 3 and Chapter 7 indicate the shortest time scales for
significant tilt angle varistions in the FRAM [V vertical array are between 10 and

20 minutes.

8.3.3 Underwater Acoustics Coaclusioas

The results of Chapter 7 paint a fresh and unigue picture of low frequincy
sound propagation in the central Arctic, from which a number of important

conclusions can be drawn:

. The validity of all the other results obtained in this area is dependent upon

‘ the fundamental conclusion that the modal structure developed in Chapter 4 i a
reasonably accurate representation of that present during the FRAM IV

Experiment. This inference can be readily drawn from Figure 7-7, since. in general,

modal phase speeds tend (o be much more sensitive to channel variations than mode

shapes,

The next. significant conclusion to be drawn concerns th. importance of the
Arctie surface duct in sound propagation, even at the lowest frequencies. This duet
influences the FRAM IV sound propagaiion problem in three ways: by controlling
the modal distribution of source energy: by controlling the sensitivity of the
horizontal array to the various modes; and by concentrating large amounts of sound
energy very near the rough ice canopy. It is obvious that the overwhelming
majority of sound energy generated by any source located in the surface duet s
channeled into modexs that 7 e effectively teapped in that duet, \ similar conelusions

‘ is true for horizontal receiving arrays deployed within the surface duet, For the

-
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frequencies of interezt here, this means that the first mode has a- tremendous
relative advantage over all other modes; first mode scurce excitation is often more
than 15 dB above that for other modes. It is also interesting and important. to note
the frequencies at which various modes transition into the surface duct. The first
mode crosses over from the deeper Arctic profile to the surface duct at about 20 Hz,
the second mode at about 40 Hz, and the third at roughly 65 Hz. although they are
not completely trapped in the upper layer until frequencies of about 30 Hz, 60 Hz.
and 90 Hz, respectively.

Given the great relative advantage that the first mode possesses compared to
the higher order modes, the observation of only very small amounts of first mode
energy at [frequencies above 40 Hz is extremely important. It highlights the
importance of modal attenuation effects in central Arctic Ocean propagation. In
terms of what is observed from horizontal array data, two very dilferent
propagation regimes exist. One of these regimes occurs below 40 Hz, where strong
first mode arrivals are observed on the horizontal array. The other regime. above
40 Haz, shows a much more equal partition of energy in the higher order modes. with
the deepest RSR paths being marginally dominant. Comparison with vertical array
results explains this skarp change. At frequencies below 40 Hz, the increase in
attenuation of the first mode with frequeney is approximately compensated by
increasing source excitation and horizontal array sensitivity.  Only above 40 Hlz,
when these effects no longer mask it, does the strong frequency dependence of the
first made attenuation become apparent in the horizontal array data. The 10 Hz
breakpoint between the two regimes can be considered to be an effective upper
bound to the range of frequencies that propagate efficiently in the Aretic surface
duct, and may thus be taken as a high frequencey limit for long range acoustie

svstems designed to be employed in the Aretie environment.,
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The modal attenuation measurements made for the first three modez from the
vertical array data verify the dominant role that the rough surface of the ice canopy
plays in Arctic Ocean sound attenuation. The frequency dependence of the
attenuation for the different modes correlates well with the frequencies at which
they transition into the surface duct, suggesting that it is the ice cover that provides
the attenuation mechanism. Moreover, the agreement of the measured modal
attenuation with predictions using the full method of small perturbations and
concurrent experimental estimates of the ice statistics is excellent for a model
consisting solely of a rough free surface at the ice-water interface. This result is at
variance with that of DiNapoli and Mellen [25], in which they cannot reach
adequate agreement between expcriment and theory using measured values of the
ice statistics. The reason for the difference in results is not presently understood.
The Kirchhoff approximation is shown to be poor by comparison in this situation.
The result demonstrates the need for the careful inclusion of surface correlation
effects in rough surface scattering models. Additionally, it is possible to interpret
the second mode attenuation results as indicating that multiple scattering effects,
or, equivalently, modal coupling effects, are significant in the rough surface
scattering problem posed by the ice canopy. Certainly, a great deal more work is
needed to verify this interpretation; if it is correct, however, it demonstrates a
unique case where the modal coupling is significant even though the coupling
coefficients themselves are negligible. What would make the coupling importaut in
this case is the great difference in modal excitation levels. Even very low level
scattering from the first mode into the second or third modes may be important
when the original excitation levels of these modes are 20 or 30 dB smaller than that

of the first mode.

The signal stability observed throughout this investigation has been
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remarkable. Many of the temporal variations observed can be attributed either 10
background noise effects or to vertical array movement, although assignment of
observed fluctuations to the latter cause cannot be done conclusively. This is due to
the lack of concurrent vertical array tilt measurements for the experiment. The
only exceptions to these findings are some signal fades observed only on selected
hydrophones of the arrays used; the cause of these variations is not presently well
understood. The observed stability of the central Arctic sound channel and the
high values of the modal coherence measured strongly support the conclusion that,
for the low frequencies investigated here, the central Arctic channel can be
considered to be completely deterministic in a temporal sense for periods in excess
of one hour. These results agree closely with those of Mikhalevsky [57], but also
break new ground, since the various propagation paths have now been at least
partially separated for independent inspection. Not only are the relative phases of
the various modes very stable; it appears that the environment causes almost no
phase fluctuations of any kind. Thus, the different propagation paths appear to bhe
completely coherent, not so much because they all exhibit the same phase
fluctuations, but more because none of them exhibit any significant phase
fluctuations at all. This observation has a number of important implications. First,
it means that any energy scattered due to rough surface effects (particularly from
the ice) remains coherent with respect to the transmitted field. This is why sound
transmissions above 40 Hz, while obviously suffering major amounts of scattering by
the ice, still display such stable phase traces at the different sensors. Second, it
means that totally unrelated tonal sources can still exhibit very high cross-coherence
in the central Arctic; the primary limiting factor is the ability to mateh the different
sources in frequency. This, in turn, makes the use of high resolution beamforming

algorithms that are subject to coherent interference (such as the MLM algorithm)
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highly suspect for stationary (non-moving) tonal sources in the central Arctjc, unless
either only a single source is known to be present, or the averaging length is
extended to periods of at least several hours, if not several days. Most importantly,
the observations show that the channel does not destroy the relative phase
information from which target range information might be extracted. Therefore,
target range estimation is feasible with respect to the temporal fluctuations in the
central Arctic. What is not so clear from the results of this investigation is whether
relative phase predictions can be made accurately enough to support snch a passive
ranging effort, especially if multiple scattering or mode coupling offects are, in fact.

significant.

In retrospect, it is interesting to apply the insight gained from the Arctic data
presented here back to the open oceans of the world. Clearly, these warmer waters
do not exhibit anything near the same stability and coherence as observed in the
central Arctic. Since the most glaring difference between the two environments is
the type of free surface involved, one must at least suspect that the temporal
instabilities more regularly observed in oceanic sound transmission are intimately
related to the time variations in this free surface from wind and wave action.
Certainly, these effects generate the strongest temporal variations in channel. The
Arctic results prove that temporal channel variations are needed to generate

temporal fluctuations in the propagating sound field.

8.3 Some Thoughts on Further Work

Every scientific investigation answers certain questions while raising other,
previously unseen, issues. This thesis is certainly no excention. Before coneluding,
then, it is useful to discuss at least a few areas that may prove fruitful for further

researcl.
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From a signal prccessing viewpoint, two valyable investigations come to mind
immediately. The first is the issue of coherent interference in the MLM algorithm.
For a situation such as that found in the central Arctic Ocean, no higii resolution
beamforming alternative that presently exists could be expected to work well,
because of the coherent nature of the channel. An investigation of how one might
successfully employ high resolution concepts in this type of environment would be of
great interest, not only for its practical value, but also because it would probably
provide a great deal of insight into how present. high resolution algorithms might be
made more reliable. It is this lack of robustness which often inhibits potential users
from cmploying high resolution techniques.  Additionally, suen an investigation
would prebably remove inuch of the mystery surrounding the often misunderstood

MLM bias issue.

A second useful investigation would deal with better methods of inferring
vertical array tilt from a received acoustic field. If a highly accurate method of
accomplishing this task can be found (one much more reliable than the technigue
used here), it would provide a rather cheap and simply implemented solution to the
most important problem facing anyone wishing to use vertical arrays for modal
decomposition. By comparison, any other type of solution, such as an in situ
measurement scheme or a modified deployment method, is likely to be both
cumbersome and expensive. A related effort to this would be an investigation of the
effects of higher order array shape variations on modal beamforming. Although
assumed negligible here, there is likely to be some frequency/mode number limit
bevond which even the small amounts likely to be encountered in practice are
significant.  Such an investigation is fairly straightforward. and would add
confidence to the belief that the shape of a vertical array can be adequately

modeled by a straight line at some angle to the vertical.
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The most interesting effort that could be undertaken in the underwater
acoustics domain to follow the present wurk would be a repeat of this xtudy in an
open ocean situation. Lacking that, two othir related investigations come to mind.
First, the indications that mode coupling might u» «guificant for the rough surface
scattering observed need to be studied more closely Intimately coupled to that
question is the more dilficult issue of whether or not relative modal phasez can he
predicted from the general characteristics of the medium with enough accuracy to
allow the source range to be estimated. Such an investigation would obviously have

to include an assezssment of the effects of mode coupling.

Finally, it would be both useful and enjoyable to repeat the exact same
experiment with an adequate array tilt measurement system in place. The lack of
tilt angle measurements has caused more than a little frustration in this thesis, and
in too many ways the results are still tenative as a result. In particular, it would he
interesting to know just how effective the array tilt estimation scheme used here is
in practice, since this is probably the greatest remaining unknown affecting the

results presented here.
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Appendix A

On the Inclusion of Signal
Components in Generalised Least
Squares Weighting Matrices

Consider a generalized least squares estimation problem with an N X .V
Hermitian positive definite weighting matrix E. and an N X M complex steering
matrix E The M X 1 complex vectoer which minimizes the scalar error Q
defined in equation (5.14) is given in equation (5.15), which iz repeated for

convenience
A, =(E*W,E'E* W, P. (A1)
Here, P is the observed complex pressure vector.

Typically, the desired weighting matrix is the inverse of the sensor cross-
coherence matrix for the noise. However, it is usually more convenicnt to use the
total sensor cross-coherence matrix, including both the signal and noise components,
since estimation of this matrix does not require separating the signal from the noise,
Thus, one must be concerned with the effect of including signal components in the
inverse of the weighting matrix. l.ctl_N._ be such a modified weighting matrix.  Its

form can be defined by

W'=W-'+EBB'E", (A.2)

where the M X 1 complex vector B consists of arbitrary constants. The second
term of equation {A.2) represents the inclusion of the signal components, Using the

identity
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it is possible to generate an expression for i in closed form
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The optimal estimator for W is

A=(E*WEI'E*WP. | A5

Using equation (A.), it is possible to write

(E* E)BB*'(E*W,E)
1+B*E*W,EB
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. (.1.6)

which can again be inverted using equation (A.3) to vield
(E*WE)™"' = (E*W,E)™' + BB*. )

Substituting equ:\tions (A1) and (A7) into equation {A.5) yields

=(E*W,E/'E*W,P=A,. (AR)

It can be seen that the least squares estimator produces the same result for
either of the two weighting matrices, If E is taken to be the inverse of the noise
portion of the sensor coherence matrix, then, from equation (A.2), E is the inverse
of the full sensor coherence matrix (including both signal and noise) for a mmpli-lvl.\'
coherent signal that is uncorrelated with the noise.  Note that this is the nature of

the requirement for independent signal and noise in the MM algorithm,

The above result can easily be generalized to the case of a random signal that
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is less than fully coherent. In this situation, the relation between the two weighting

matrices is of the form

Wl Wo!+ ESLE*. (A9)
where i“ is the M X M modal (or signal) cross-coherence matrix '
s.=E[BR']. (.\.10)

This is » complete generalization, since for complete signal coherence the vector B
becomes non-random, and the result then reverts back to that given in equation
(A.2).

By singular value decomposition. the matrix §,, can be written as

M
Sy=2 nye' ' (RN}

=)
where the ). and g, sre its eigenvalues and eigenvectors, respectively. The more
general result is then proven by applying the approach presented above M tins in
succession, once for each cigenvector in the sum. It is important to observe that
while this generalization relaxes the deterministic signal assumption. it in no way

alters the requirement that the signal and noise be completely uncorrelated.
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Appendix B

The Performance Relationship Between Single
Beam and Multiple Beam MLM Algorithms

Consider two related multiple beam MLM estimation problems. In the first
problem, M modes (or beams) are included in the beamformer. From equation
(5.20). the estimate of the M X M modal (or beam) cross-coherence matris for this

situation is
§,\| - ‘EG 5:' EM)-l ' (1)

where By, i3 the .V X M steering matrix and 8y, is a sensor cros-coherence matris

of size N X .N.

As the second problem, consider a multiple beam beamformer having a ttal
of M+ 1 modes included, and Jet the first M of these modes be identical 1o those
from above. The steeving matrix for this problem & then NV X M40, and may be

written as

E_\g.n - [EM |E]. (8.2)

where E is the NV X 1 steering veetor of the additional mode,  The extimate of the

M+1 X M41 modal cross-coherence matrix is

TS  _(p+ e -1 _
Syer = (Eyy) SN Byqy/™ =

An estimate of the modal cross-coherence matreix for the original M mods
may be obtained from the second problem by extracting the upper left hand

M X M submatrix
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S,( may then be identified by uzing the formula for the inverse of a parfitioned

Hermetian matrix, If
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From equation (B.7),
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Equations {B.1) and (B.10) ¢an be interpreted to show that the beamformer
containing M modes always provides better performance than the one containing
M+ 1 modes. Consider a situation where the sensor eross-ccherence matriy
consists solely of noise with no signal. For these conditions. the two dilferent
estimates of the M X M modal cross-coherence matrix indicate the amount of noise
that is not rejected in each beamformer. In particular, the diagonal terms indieate
the noize power that leaks into the amplitude estimate of each mode. .\ comparisan
of equation (B.1) with (B.10) shows that the diagonal terms in the latter are never
less than the disgonal terms in the former. The additicnal contributions indicated
in (B.10) are always positive, since the numerator of the fraction is a matriy formed
by taking an outer product of 3 vector with itsell, while the denominator is a <ealar

that is also guatamced to be pesitive. This last conclusion comes from a

consideration of 2 "\tﬂ in equation (B.4). If one zssumes S\ to be pesitive definite.

then it follows that S“ +1 Must also be positive definite and, hence, 4 "\m must be

positive. But, from cquation (B.9),

v\

Np1 = (B.11)

|
(E*SS'E) - (E*ST'E,,) (E} ST'E,,) (B, S3'E)

so that the denominator (which is identiesi to that in equation (B.10)) must be

positive,

More insight can be gained by considering a situation where the sensor cross-
coherence matrix is a combination of two components, one consisting of noise and
the other being a signal of amplitude a in the M41% mode. From the viewpoint of
the first M modes, the signal in the M+1% mode represents additional noise against

which the processors must diseriminate.  For this situation, the sensor cross-
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coherence matrix is

Sy=S§, +lJ"EE*. (B.12)
After much algebra, it can be shown that

. —
Sy =(E4S;'E\)! + (B.13)

(EYS7'E,)' (B}, S;'E)(E* 5 E,) (B, ;' E,)™!
l/lol'+(§.“§;"§)—-(.E*.S.;‘E.M)(E s, E\ﬂ‘ (E}S;'E)

while

s, =(E}S;

'Ey ) + (B.14)

(E §:‘E ) (E\l-ulp-)(E+ S"lE“) (E\l s—l E\l)—l
(E*S'E) - (E*S;'E,) (E},S'E,)' (B S.'E)

Note that the result in equation (B.14) is completely independent of the amplitude
of the M+1"' mode, and is in fact identical in form to equation (B.10). ‘This is
indicative of the fact that the beamformer containing M + 1 modes automatically
generates a null in the direction of the M+1% mode for the beam patterns of all the
other modes, whether or not any signal is actually present there. The result in
equation (13.13), on the other hand, balances the amount of noise against the
amount of M+1%t mode signal, optimally deploying the extra null to best
discriminate against the combination of the two. When the amplitude goes to zero,
the second term in equation (B.13) disappears entirely, and the beamformer
completely ignores the M+1% mode. Conversely, as the amplitude gets larger, the
beamformer increasingly discriminates against the mode: at very large amplitudes, it
is foreed to devote a full null to the mode, and result approaches that of equation

(B.1-).
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If a multiple beam MLM beamformer containing M modes always produces
better performance than one containing M+ 1 modes, then a M —1 mode
beamformer always performs better than one of M modes. Thus, it is obvious that
a single beam MLM beamformer (which contains only one mode) always provides
better performance than any multiple beam MLM beamformer. However, this
statement must be qualified by the assumptions inherent in the derivation of the
MLM algorithm, particularly the assumption that the signal and noise be
independent of each other. For a singlec beam MLM beamformer operating in a
sound field consisting of many modes, this assumption is met only if the different
modes are incoherent with respect to each other. If this is not the case, then
coherent interference adversely affects the performance of the single beam

algorithm, a degradation not accounted for in the analysis presented here.
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